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L. Introduction
A. A KEY QUESTION

The question of how language influences concepts is an old one. Do words
merely map onto pre-existing concepts? Or do words actually create the concepts
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to which they refer? Would children have notions of different colors, textures, or
numbers if they never were exposed to the linguistic labels for these ideas?
Interest in these questions can be traced deep into the philosophicat roots of
psychology and throughout a good deal of the empirical investigation that has
been carried out since. However, despite the rhetoric swrounding these issues, we
seem to know few actual details of the way language and cognition interact.

This problem is particularly acute in the area of numerical development, for
which children must integrate many layers of verbal, procedural, symbolic,
and conceptual meaning. To illustrate the complexity invelved, consider this
3 % -year-old research participant’s understanding of “five.”

Experimenter: “Can you give me five [blocks]?”

Child: chelds up five fingers) “This is five.”

Experimenter: “Can you give me five blocks?”

Child: (lays out 15 blocks and counts them) “One, two, three, four, eight,
fiveteen. There’s five!”:

Experimenter: “Ckay. Can you count these for me?” (handing the child an
array of 10 blocks glued on a board)

Child: “One, two, three, four, eight.”

Experimenter: “How many is that?”

Child: “1 don’t know. Dad, do you know?”

This child has learned what five fingers are and, in that limited context, could
be said to understand the concept of “five.” Although she confuses “five” and
“fiveteen” jo her count, she seems to know that counting determines cardinal
number and that the last word in a count has special meaning. She uses counting
to “prove” that her pile of 15 blocks equals “five.” But when it comes to
performing unfamiliar experimental tasks or counting larger sets, these under-
standings seem to evaporate. How, then, should we characterize her status? Does
she understand “five” or doesn’t she? And what does this tell us about the more
general process by which children bring meaning to the number words?

In this chapter, we review what is known and what has been proposed
regarding the interactions between number words and number concepts, We
argue that both classic and current conceptualizations have obscured the rich
detail of these interactions by asking, *Which comes first, language or concepts?”
As the experimental transcript illustrates, number development viewed close-up
is not so orderly. Indeed, we find that this polarizing framework has limited
progress in two specific ways: (1) by attempting to separate empirically what
cannot be separated developmentally and (2) by casting developmental change in
terms of months or years instead of days, or even moments. We conclude the
chapter by seviewing case study, microgenetic, and longitudinal research that
reveals how fluid and tightly woven the interplay of verbal and nonverbal
quantification really is.
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B. WHAT DOES IT MEAN TO HAVE A NUMBER CONCEPT?

Like many concepts, number encompasses a variety of perceptual and
symbolic inputs. But, it also has aspects that make it unigque. For example,
consider what it means to understand “five.” This notion can be instantiated in
groups of objects that vary widely along every other dimension (e.g., five fleas,
five skyscrapers, five planets). It can include groups of non-objects, such as
sounds, visual events (e.g., lights blinking), actions, ideas, or emotions. These
groups may come together in space (e.g., five cookies on a plate), time (e.g., the
five cookies I ate last night) or based on function {e.g., the five cookies | know
how to bake). The ability to see these diverse groupings as equivaleat is a large
part of what might be considered nonverbat number concepts.

Number also can be represented symbolically in various ways; as a spoken
word (e.g., “five”), a written word, (e.g., five), or as a written numeral (e.g., 5).
These symbeols for numbers can vary in their intended meaning. Sometimes they
simply refer to the number of objects in a set (cardinal meaning). However, they
also can refer to a set of measurement units (e.g., five inches, five years, five cups,
efc.) or to less standardized measures, such as clothing size {measurement
meaning). They are used to denote street addresses, room numbers, radio stations,
and so forth, where only position or order matters {ordinality meaning). When
they are used in fractions, they can behave differently than they do in reference to
whole numbers (e.g., 1/5 < 1/3 but 5 > 3). And sometimes these symbols are
used as names without quantitative significance, as in license plates and
telephone numbers (rominal meaning). (See Fuson (1988, 1992}, for an extended
discussion of these and other number uses.)

In addition to providing symbols for specific numerosities, vetbal numbers also
are used in counting. However, counting is conceptually and deveiopmentally
distinct from labeling sets. That is, children can count “1-2-3-4-5" without
realizing this is the same as determining that a set has five items. Indeed, these
ideas remain disconnected for at least a year after children can produce accurate
counts (Wynn, 1990, 1992), Furthermore, whereas counting leads to cardinal
meaning, the relation between the numbers in a count and the specific objects to
which they were applied is arbitrary. Most times, there is no reason that the
second item in a count gets the fabel “two” except that the counter happened to
tag that item second. In a subsequent count, the same item could be labeled “four”
or “ten” and yet the overall count would yield the same cardinal total as before.
Thus, as in other word to referent mappings, the number words are used to tag
individual objects; however, in the case of counting, these local pairings are
neither stable nor meaningfu, '

What, then, must children do to develop a concept of number? Certainly, they
must come to understand each of the aspects of number outlined here, They must
learn to recognize numerical symbols and apply verbal processes, such as
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counting, as well as sort out the various meanings and uses that these symboly
take on. They must leamn to recognize “threeness,” “fiveness,” and “twenty-
fourness™ in all possible instantiations. But, perhaps most importantly, they mus
recognize that all of these components are interrelated, Understanding “five”
means knowing that all of these instantiations—five fleas, five planets, five trips,
¥5,7 *1-2-3-4-5." and “five"—are the same. To achieve this understanding,
children must perform a series of mappings among many situations, skills,
and inputs.

Viewed this way, number concepts should develop like other concepts (e.g.,
dog, blue, shiny), but with added challenges given that (a) the exemplars included
in a nuinber category can be vastly different; (b) number categories piggyback on
other categories, and (¢) there are unique components involved in counting and
common number use. For example, to learn the concept of “dog.” children have
to see that different dogs are all the same because of their “dogness.” However.
the range of variability for a chihuahua vs. a Great Dane is much narrower than it
is for five planets vs. five emotions. Like learning about numerical sets, learning
about dogs invelves forming an equivalence class and figuring out what to call i.
However, for dogs, the equivalence class consists of individual items (i.e., dogs)
whereas for number, it consists of sets (i.e., items grouped for some other
purpose). Finally, for dogs, there is no analogue to learning the count word
sequence. Children need not learn a sequence of animal names and, even if they
did, tagging a group of animals with that sequence would not tell them whether or
not they had a group of dogs. Thus, number learning likely involves similar
processes but greater complexity than leaming other concepts.

The present analysis illustrates the many verbal and nonverbal problems
children must solve to acquire number concepts—so many, in fact, that it is
unlikely they could wholly master one group (verbal or nonverbal) before
learning anything about the other. The numerous layers of abstraction and
meaning on both sides virtually guarantee some amount of bootstrapping. The
question, then, is how much bootstrapping and at what level of detail? For
individual components? Specific set sizes? Specific contexts? And at what point
in development do number words and concepts begin to co-mingle? We first look
to two classic positions, as well as the relevant literature specific to number
development, to address these questions. )

II. The Relation Between Language and Concepts

A, CLASSIC POSITIONS: A FALSE DICHOTOMY?

Discussions of langnage and concepts usually begin with a chicken—egg
problem; which came first, the concepts or the words? On one hand is the notion
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that concepts emerge from some nonlinguistic origin. On the other is the claim
that they are created, or at least heavily. influenced, by one’s native language.
There are several reasons to reject this dichotomy from the outset. First, even a
cursory analysis of the contents of number concepts indicates that there can be no
clear leader. So many verbal and nonverbal components are acquired that one
side could not completely precede the other, Second, although these extreme
positions are often used to frame research, no one lays claim to either one.
Despite ongoing debate about the developmental origins of number, modern
investigators agree that number concepts are ultimately a mix of verbal and
nonverbal components and that there is a bidirectional influvence between these.
Finally, presenting the issues in such gross caricature does an injustice ta early
theorisis who, despite being strongly associated with certain ideas, also viewed
these interactions as complex and bidirectional. Nonetheless, these two extreme
views have framed much of the research related to number words and number
concepts. For that reason, we begin with a closer examination of the distinction
itself and its inherent problems,

1. Concepis Lead Language

The idea that concepts have nonlinguistic origins seems so intuitive that it can
be difficult to imagine an alternative. After all, words are arbitrary symbols that
derive meaning only by mapping onto a referent. The word “dog” does not
mean anything until it is mapped onto an instantiation of a dog. This suggests
that we must first develop some understanding of “dog” from nonlinguistic
experience——perhaps guided by innate learning mechanisms or sensitivities.
On this view, language is the icing on the cake—a means to communicate
with others about the many ideas accumulating in our nonverbal stockpile
(Fodor, 1983; Pinker, 1994).

Arguments to this effect have been made throughout the history of research on
number development (Russell, 1919; Piaget, 1965; Beilin & Kagan, 1969:
Beilin, 1975). For example, Piaget claimed that early number concepts emerge
from the synthesis of two logical concepts, namely, class and ordinal seriation.
Because early counting is initially a rote procedure, and because children fail to
demonstrate logical reasoning even after they have mastered conventional
counting, Plaget rejected the notion that number language contributes
significantly to this development. Russell (1919) held a similar position and
argued that early number instruction should be based on logical classes and not
on the counting procedure. The basic idea was that because understanding
number required more than counting, the origins of such concepts must be
nonverbal.

This general position has been revived more recently, but ironically, it is based
on evidence that numerical understandings emerge prior to conventional
counting. For example, some have claimed that humans are endowed with



30 Kelly §. Mix et al.
4

a prelinguistic core of conceptual knowledge for number based on evidence thal
infants can detect changes in set size (Antell & Keating, 1983; Starkey & Cooper,
1980; Starkey, Spelke, & Gelman, 1990; Strauss & Curtis, 1981; Xu & Spelke.
2000) and anticipate the results of simple transformations (Simon, Hespos, &
Rochat, 1995; Wynn, 1992), A weaker claim has been that certain guantitative
skills can develop without mastery of conventional skills, not as part of an innate
endowinent, but via early experience {Huttenlocher, Jordan, & Levine, 1994
Mix, Huttenlocher, & Levine, 2002b; Saxe, 1988, 1991). Thus, the idea tha
numerical insight develops without mastery of conventional symbols (i.e..
concepts lead language) has played a major role in theories of number
development.

2. Language Leads Concepts
In contrast, other theorists have argued the opposite—that language supports
the development of certain ideas and skills that might not exist otherwise, Effects

of language on cognition are often discussed in terms of the Sapir—Whor!

hypothesis: the idea that our concepts, and even our perceptions, can be altered by
the way our native language parses the world (Whorf, 1956), Numerous studies
demonstraling cross-linguistic effects on reasoning and categorization lend
support-to this claim (e.g., Choi & Bowerman, 1991; Levinson, 1994; Lucy.
1692). Similar evidence has been garnered in the domain of number. For
example, Japanese children, whose language has an explicit base-ten structure.
demonstrate a better understanding of other base-ten representations, such as
place value blocks and written numerals, than their English-speaking peers
(Miura & Okamoto, 1989). Here, the structure of the counting system appears 1o
influence how children perceive other situations, such as the relations among
place value blocks. .

Another take on this position is that cultural tools, such as language, scaffoll

human thought so that new insights can be gained. For example, much of

Vygotsky’s work was aimed at testing whether people of different ages could usc
external symbols to perform cognitive tasks at increasing levels of abstraction
(Vygotsky, 1962). There certainly are examples of this type of “tool use” in the
literature on number concepts. From an historical perspective, the advent of
improved enumeration systems has preceded new conceptual insights. For
example, the shift from Roman to Arabic numerals allowed people of the middic
‘ages to invent compurations, such as long multiplication (Menninger, 1958).
Similarly, some number systems better prepare children for learning compu-
tational procedures than others. Fuson and Kwon (1992) found, for example, that
Korean children have an easier time learning to solve multi-digit addition and
subtraction problems than English-speaking children. Here, the transparen
counting system acts as a tool that children can use to gain insight into an
unfamiliar computational procedure. As these examples illustrate, the claim that
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number words influence pumber concepts and mathematical thought (ie.,
language leads concepts) also has a strong tradition in theories of numerical
development.

3. A Case in Point

This chicken—egg dichotomy crystallized in a well-known debate on the
origins of number: Principles Before vs. Principles After. The “principles” in this
debate refer to the counting principles outlined by Gelman and Galiistel (1978)
(see Table I). These principles were not themselves under debate—everyone
agreed that they were needed for accurate and meaningful object counting
(enumeration). The debate centered on when uaderstanding of the counting
principles appeared relative to acquisition of the verbal counting system,

Advocates of the principles-before view argued that children understand the
counting principles before they have learned to count. This was possible because,
they believed, the counting principles were embodied in both verbal and
nonverbal (innate) enumeration procedures. The nonverbal counting principles
were considered a skeletal structure that children fleshed out with the details of
their culture-specific counting system (Gallistel & Gelman, 1992; Gelman &
Meck, 1983). So, much like universal grammar is thought to aid in language
acquisition, access to preverbal counting principles was thought to precede and
aid learning to count.

The main evidence for this view was that children adhere to the counting
principles even before they possess the skill needed to demonstrate these
principles “through accurate counts. For example, novice counters often use

TABLE L
Ceunting Principles (adapted from Gelman & Gallistel, 1978)

One-to-onie principle Every item in a display should
be tagged with one and only
one unique counting tag
-Counting tags must maintain a consistent
sequence
The final tag used in a
count represents the total numerosity of
the set
Any combination of discrete entities can
be counted
Order itrelevance principle ltems in a set may be
tagged in any order as long
as the other counting principles are
not viotated

Stable order principle

Cardinality principle

Abstraction principle
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idiosyncratic lists (e.g., 1-3-7-5) rather than the actual counting sequence.
Even so, these children seem to act in accordance with the “how to count”
principles. That is, those who count “1-3-7-5" use the same stable (albei
incorrect) order on every count {Gelman & Gallistel, 1978). Pre-counters also
detected violations of the one-to-one and stable order principles in someone
else’s counting, even when the set sizes were far greater than those they could
accurately count themselves (Gelman & Meck, 1983).

Proponents of the principles-after view did not believe children could access
counting principles preverbally. Instead, they argued that these principles are
abstracted through experience with the counting routine (Briars & Siegler, 1984;
Fuson, 1988). Evidénce for improvement in these skills was taken as support for
the principles-after position. For example, Fuson found that early adherence 1o
the counting principles broke down when more challenging tasks were used, such
as counting large or randomly arranged sets. In contrast to Gelman and Meck’s
(1983} results, Briars and Siegler found an age effect for detecting counting
principle violations, such that 3-year-olds were less likely to object to one-to-one
and stable order errors than were 4- and 5-year-olds. Thus, children’s
understanding of the counting principles apparently improved as their counting
skills improved. Also, other studies contradicted the principles-before findings.
In particular, several investigators reported that children’s own counting
was actually more accurate than their-error detection, indicating the reverse of
the order of acquisition reported by Gelman and Meck (Baroody, 1984, 1993:
Briars & Siegler, 1984; Frye et al., 1989).

The Principles Before—Principles After debate is a prime example of the way
language and concepts have been polarized in research on number developmen.
But as we have seen, this dichotomy reaches far beyond this debate. Indeed, it
permeates much of the research in this area. Of course, few theorists, including
those cited here, have taken either position in the extreme. Still, they have been
willing to argue strongly for one contribution over the other. And as with other
developmental dichotomies {(e.g., nature vs. nurture), the change from a
categorical division 10 a continuum merely obscures the polarization of the
two extremes. It shifts the question from “All'or none?” to “Mostly this or mostly
that?” In Section ILB, we consider the problems with even this type of division.

B. PROBLEMS WITH POLARIZATION

Polarizing language and concepts has limited our understanding of number
development in two ways. One is a problem of definition. To show an influence of
language on concepts (or vice versa), researchers must define “having language”
and “having concepts.” This critical task is neither straightforward nor simple.
For example, which of the many verbal components of number outlined
previously would qualify as the definitive test for “having number language?”
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Aren’t they all necessary? Yet, long before children have mastered every verbal
component of number, individual verbal skills may influence conceptual growth,

Moreover, the relation between language and concepts can shift easily
depending upon where investigators draw the line between having one or the
other. Take, for example, Piaget’s research on number conservation. Piaget
defined “language™ as how high a child could count, and “concepts™ as the ability
to judge equivalence in the face of irrelevant transformations (e.g., lire length),
He found that children accurately counted large sets for some. time before they
conserved number, In fact, he demonstrated that asking children to count the two
arrays in the conservation task did not lead to improved performance.,

But what if Piaget had defined “language™ differently? Using counting to
compare sets requires more than simply enumerating the sets accurately. One also
needs to know how counting determines cardinality (i.e., knowing that a
collection counted “1-2—-3-4" has four items)—an understanding that is not
achieved unti] relatively late (Wynn, 1990, 1992). There is also evidence that to
conserve number, children must relate counting to ordinality (i.e., understand that
N+ 1> N) (Baroody & White, 1983; Schaeffer, Eggleston, & Scott, 1974).
These examples liustrate that by changing the definition of “having number
langnage,” a link between counting and conservation becomes more plausible.

Disagreement about how to define “counting” and “principles” also fueled the
Principles Before—Principles After debate. If having principles means demon-
strating any adherence to them, then young children appear to have principles. If
having principles means demonstrating them under a range of complex and
challenging tasks, then principles appear to develop slowly. The fact is that
counting experience and counting principles cannat be completely separated—
especially net using cenventional counting tasks. By the time. children can
perform any of those tasks, they have had years of exposure to conventional
counting. So, no matter how inaccurate their own counts might be, their abHity to
follow some procedures and detect errors may still grow out of their limited
exposure to conventicnal counting. At the same time, conventional counting
tasks do not directly test the claim that children have access t¢ a nonverbal
counting procedure. It is theoretically possible for children to quantify sets in
accordance with the counting principles even before they have been exposed to
conventional counting, but this possibility cannot be assessed using conventional
counting tasks. In short, the effects of Janguage appear to come and go depending
on what definitions and associated measures are used.

This issue of shifting definitions is, at its core, a case of competence vs.
performance—the idea that what one knows can be separated from what one
does. The competence—performance distinetion is what underlies the claim that
one counting task is more valid than another. It is what allows us to debate which
conditions reveal what children “really know” abont anumber. And as
investigators have debated the validity of different number tasks, the relation




A4 Kellv 5. Mix et al.

between language and concepts has been pushed back and forth, For example,
researchers subsequent to Piaget argued that the number conservation task was
not valid because, among other things, it used large sets, In modified tasks usin 2
smalter sets, 3- and 4-year-olds demonstrated the ability to judge the equivalence
of sets despite spatial transformations {Gelman, 1972). Clearly, children at this
age are less skilled counters than children who could pass Piaget’s version of the
conservation task; a fact that implies counting may have even less to do with
conservation than previously argued. However, most preschool.children haye
some understanding of the small number words, even though they are noi
proficient counters (Wynn, 1990, 1992). So if we shift the language criterion from
counting sets to labeling sets, we should find another reversal—langnage could
well lead concepts again.

If everyone could agree on the quintessential measures of both langrage and
conceptual competence, it would be easy to test which comes first, But of course.
there is no such thing as the quintessential measure of competence—there is only
performance on different tasks (see Mix (2002), Sophian (1997), Thelen aml
Smith (1994) for discussions). Competence is inextricably connected to this
performance. [t cannot be separated in any meaningful sense. Thus, for the same
reasons that some investigators have rejected the competence-—performance

distinction in general, we should question a clear unidirectional influence of

either language competence or conceptual competence in number development.
The appearance of such an ordering is almost certainly an artifact of the particular
definitions that were used.

A second problem with polarizing these positions is that to do so requires
committing to a particular time Scale of analysis—a commitment that is usually
not made explicitly, but yet has profound implications regarding how the
interactions between language and concepts are characterized. For example, in
Mix’s work on numerical equivalence, a rather broad time scale was implicitly
adopted. Mix and colleagues found that children could match equivalent sets
{where one set was hidden) before they demonstrated the ability to count or labet
the same set sizes (Mix, 1999a,b, 2004a; Mix, Huttenlocher, & Levine, 1996).
They then concluded that a nonverbal representation of small sets likely precedes
verbal counting. The underlying assumption was that, because children could not
use conventional counting to mediate their comparisons, they must use a
nonverbal process instead. The time scale adopted in this research was 6-month
increments—the difference between one age group tested and another. Thus, the
further (implicit) assumption was that language and concepts probably did net
interact until children were better counters, after which they began to recognize
more abstract numerical comparisons. Although this latter claim specified a
hidirectional influence between the nonverbal, high-similarity comparisons and
verbal counting, this influence appeared to take place on a scale of months or
eVven years.
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However, language and concepts likely interact on a much closer time scale,
For example, when a child at play hears two sets labeled with the same count
word, this brief input could cause an attentional shift—one that could temporarily
support a numerical comparison. Many such interactions could take place well
before children can produce the labels themselves in an experimental task. Thus,
what one claims about the influence of language on concepts, or lack thereof, is
intimately tied to what time scale one chooses. And most existing research on
number concepts uses time scales too broad to capture any subtle interplay
between the two. (See Thelen and Smith (1994), for further discussion of time
scales in developmental research.)

C. CURRENT CONCEPTUALIZATIONS

Given the problems with polarizing language and concepts, it is natural to ask,
why can’t it be both? And the answer is that, of course, it is both—a mixture of
nonverbal and- verbal influences that promote cognitive growth through their
interactions, Current conceptualizations of the relation between number words
and number concepts take this middle ground. Rather than strongly emphasizing
one contribution over the other, these views describe an alternation between
verbal and nonverbal influences, differing mainly in how to characterize the
nonverbal component. Thus, instead of posing a chicken—egg problem, these
views take more of a seesaw approach. However, because a dichotomy between
verbal and nonverbal contributions remains, many of the same problems remain
as well. :

1. Language Transcends the Limits of Innate Knowledge Structures

In one class of current conceptualizations, investigators assume that humans
are innately endowed with core knowledge systems for number, Although these
sysiems are seen as an important foundation for mature number concepts,
the argument is that they have significant limitations. Language is portrayed as
the catalyst that allows young learners to transcend the limitations of their innate
systems and create more powerful knowledge structures (Carey, 2001; Gelman,
1991, Spelke & Tsivkin, 2001; Wynn, 1998).

In one of the best articulated accounts, Spelke started with the assumption that
human infants and many nonhuman animals possess two ‘separate systems for
representing number nonverbaily (Spetke, 2003; Spelke & Tsivkin, 2001). One
system represents items exactly but only works for small numbers. It uses a
tracking mechanism that assigns a mental token to each object in a group. These
tokens function as pointers to the objects’ locations. Because there is a one-to-one
relation between tokens and objects, the set of tokens can be used to represent
the exact number of objects. However, only a few pointers can be active at any
one time due to constraints on selective attention. Furthermore, although
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the representation preserves the individuality of the objects, it does not provide a
representation of the whele group (i.e., in the way that a number word like “three”
verbally represends a set’s cardinality).

The other system represents large sets but only approximately. It is based on
the aceumulator mechanism, proposed by Meck and Church (1983) to explain
timing and counting in rats. This mechanism works by emitting puises of energy at
a constant rate. As items are tagged, these pulses are gated into an accumulator.
The resulting fullness of the accumulator, or its magnitude, provides a
representation of number. However, it is inherently inexact, even for small sets,
because there is not a one-to-one relation between pulses and items, Also, in
contrast to the exact system, this representation does not preserve the individuality
of the items, though it does represent the group as a whole. Thus, both systems
have inherent limitations—the first system being limited to set sizes that the object
tracking mechanism can handlé (i.e., <4) and the other being limited to rough
estimates. Only verbal humans, Spelke (Spelke, 2003; Spelke & Tsivkin, 2001)
has asserted, can represent all set sizes exactly and they do so by counting.

An important aspect of Spelke’s conceptualization is that the two core
knowledge systems for number are independent of each other and highly
encapsulated. That 1s, though they both represent an aspect of number, they do
not interact so as to provide the basis for a complete number concept (i.c., the
ability to represent a collection composed of individuatl items). This means that
when children encounter a small set, they should produce two representations of
it—one approximate and one exact—without seeing that these representations
are related. “By our hypothesis, the child has two systems for representing arrays
containing [for example] two objects... Because of the modularity of initia
knowledge systems, these representations are independent. When young children
hear the word two, therefore, they have two distinct representations to which the
word could map and ne expectation that the word will map to both of them”
(Spelke & Tsivkin, 2001, p. 85).

The critical question in this model, then, is how children see that these systems
are related and, thereby, overcome the inherent limitations of each. The answer,
according to Spelke, is via acquisition of number language. Number language
serves to conjoin these two representations because it provides (a) a domain
general medium that allows domain specific knowledge to co-mingle and (b) a
format that invites the combination of distinct concepts or systerns. In Speike’s
account, children make sense of counting by seeing that the same small number
words map to both preverbal representations. “... because the words for small
numbers map to representations in both the small-number system and the large-
number system, learning these words may indicate to the child that these two
sets of representations pick out a common set of entities, whose properties are
the union of those picked out by each system alone” (Spelke & Tsivkin, 2001,
p. 85). Having made this important inference, children are in a position
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to generalize to larger sets becausé the low end of the counting sequence
(i.e., “one—two—three”) is connected to the higher end that refers to larger sets.

Now, let us retwrn to the larger question of how language interacts with
concepts in terms of the “language first—concepts first” dichotomy. We see both
positions represented in Spelke’s account. Initially, preverbal representations
precede and act as referents for the first few number words (concepis first),
However, once these initial mappings have been carried out and conventional
number language has been integrated with the preverbal representations, children
are poised to achieve significant conceptual gains (language first). Thus, Spelke’s
account involves a bidirectional influence between language and concepts. Yet it
achieves this in only a very rough sense.

In a similar vein, Carey (2001) distinguished between two possible relations
involving number language and number concepts—a distinction that bears strong
resemblance to the polarization outlined in the previous sections. The first
relation, dubbed the “continuity hypothesis,” holds that verbal structures are
isomorphic to preverbal structures and, therefore, involve no conceptual change
when they are acquired—it is a simple mapping of words to pre-existing
concepts. The alternative relation, attributed to Whorf, is the idea that some
preverbal concepts are incommensurable with the structure of the relevant
language. These cases involve dramatic conceptual change that takes place as
language is acquired. Carey argued that processes based on both relations
underlie numerical development, and we can determine which situations involve
which processes by evaluating whether competence is exhibited in prelinguistic
babies or only in children and adults with language.

Teo this end, Carey (2001) outlined five aspects of number that are reflected in
human language, such as singular vs. plural and the count—mass distinetion, and
reviewed the existing literature to determine which of the five are understood by
prelinguistic infants. She concluded that even very young infants comprehend
four of the five components of number (see Table II). Thus, these notions would
seem tao develop without language and could, therefore, serve as conceptual
referents for the relevant grammatical structures as language is acquired.
However, the fifth relation, integer representation, was not evident in
prelinguistic infants. Carey reasoned that language input would be required for
integer representation because neither of the systems that have been proposed for
representing number nonverbally (i.e., the exact system for small number or the
approximaie system for large numbers) is structured like conventional counting.
In particular, neither sysiem can represent cardinality and thus, neither could
support an easy mapping between number words and referents, In this way, Carey
explained the protracted course by which children bring meaning to the number
words and verbal counting.

Although these accounts vary in their treatment of certain points, they share
several key assumptions: (a) number development involves a bidirectional
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TABLE II
Five Aspects of Number Reflected in Natural Language (adapted from Carey, 2001}

Evident
Concept Example in infants?
Object individuation "I remember the toy duck that is hidden YES
under the tahle”
One vs. another “I see a duck over here and a duck over YES
there and know they are not the same duck™
Count vs. mass “Twe ducks are distinct individuals, but YES
two piles of sand are just some stuff”
Sortals (nouns) vs. “Where the duck moves tells me it's an YES
predicates (adjectives) individual, but its color and size do not”
Symbolic representation of “One—two—three~four—five, Five ducks” NO

integers {i.e., counting)

interaction between verbal and nouverbal structures; (b) the nonverbal structures
are what prelinguistic infants and nonhuman animals use; {(c) these nonverbal
structures play an important role, but they are limited: and (d} what helps children
transcend these limitations is acquisition of number language. At some level,
these seem like reasonahle assumptions. However, on closer examination, we
find reason to question them.

First, there is widespread agreement that number development involves an
interaction between verbal and nonverbal structures. But the devil (or maybe
God) is in the details—details that are left largely unspecified in these accounts.
The critical turning point in each of them is when children manage to map small
number words, as . labels, onto their pre-existing representations for the
corresponding quantities. But how, exactly, do children achieve this crucial
step? Cross-sectional research indicates that this is an elusive and protracted
mapping. Therefore, the specifics of how it is achieved are neither obvious nor
likely to be straightforward.

This is a case where time scale may be critical. The accounts described here
suggest a long period of stability, during which infants and toddlers use their
innate representations, followed by an unspecified mapping process, and then
another long-—perhaps indefinite—period during which concepts have been
transformed. Presented as such, the interactions between language and concepts
resemble two large scale, unidirectional shifts that take place in sequence more
than they do ongoing bidirectioral, bootstrapping. Yet, as we will see, when
development is studied on a different time scale, the interactions between number

words and number concepts appear much more fluid and tightly linked in time
than these accounts imply.
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There also are problems with the way these accounts define verbal and
nonverbal components. As noted previously, drawing this distinction can be
complex and arbitrary. However, these accounts draw a clear line between whal
seemingly nonlinguistic beings (i.e., infants and animals) know and what those
of us with language know. But at what point do we say that infants shift from
prelinguistic to linguistic? When they have been exposed to words? When they
comprehend words? When they begin to speak themselves? It seems difficult to
say with certainty that any of infants’ sensitivities are based on purely nonverbal
information, when humans are immersed in linguistic input beginning
prenatally. And what about the opposite end—the concepts of thase who
have acquired language? The demarcation adopted here implies that onfy
prelinguistic infants possess nonverbal thoughts, even though cognition is likely
a mixture of verbal and nonverbal comporents, even in language experls
(i.e., adults). Indeed, this was one of Vygotsky’s claims—that although
language-mediated thought increases with development, it never fully eclipses
nonverbal thought,

Finally, there is cause to question these accounts on empirical grounds. Both
assume that the nonverbal foundation of early number concepts is comprised of
abstract representations generated by two innate processes (i.e., the small exact
number system and large approximate number system). In support of this, Spelke
and Tsivkin (2001) cited evidence for dissociable enumeration systems in adults.
For example, they noted that adults with acalculia, who cannot provide exact
solutions to arithmetic problems, often give estimates of correct answers. This
certainly suggests that humans have different systems for representing number
(though this has been recognized for some time: Jensen, Reese, & Reese, 1950;
Jevons, 1871; Kaufman et al., 1949; Taves, 1941). And it may show that these
systems are localized in different parts of the brain. However, it does not indicate
that either of these systems are innate, or even early emerging.

In fact, research involving young infants has yet to clearly demonstrate any
sensitivity to discrete number, with or without implicating either proposed
representation (see Mix, Huttenlocher, and Levine (2002a,b), for a discussion). In
brief, the evidence cited in support of numerical sensitivity in infants is
undermined by confounds with non-numerical cues. For example, habituation
studies showing that infants can discriminate between different set sizes (e. z.
Antell & Keating, 1983; Starkey & Cooper, 1980; Starkey, Spelke, & Gelman,
1990; Xu & Spelke, 2000) are undermined because number was allowed 1o co-
vary with contour length and/or area. When these variables have been separated,
infants fail to respond to number, but continue to respond to changes in non-
numerical cues (Clearfield & Mix, 1999, 2001; Feigenson, Carey, & Spelke,
2002). This casts doubt on the idea that either representation provides a nonverbal
referent for the number words, because it is currently unclear when or how such
representations develop.
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If future research succeeds in demonstrating that these Iepresentations emerge
wifhout exposure to language, by testing very young infants under conditions that
Strip away or randomize every other quantitative Cue, this still might not bear on
what infants do in everyday sitwations where these other cues are available (Mix
Huitenlocher, & Levine, 2002a). This is a problem for accounts that assume;
children map number words onto nonverbal, abstract representations. If children
use non-numerical information when it is available, then why would they map the
number words to abstract representations of number and not to this information?
For example, if a one-year-old hears his mother say, “two cookies,” what tells
him o map this phrase to a mental representation of the cookies’ two locations
rather than the amount of cookie relative to the plate? For that matter, why woulc;
he map the number word to a mental representation at all, whether in terms of
number or amount, when the actual objects are right in front of him?

2. Language Transcends the Limits of Experiential Knowledge Structures

An alternative to the innate knowledge models is the view that nonverbal
3'epresentations of number develop in early childhood rather than comprising an
mnate endowment (Huttenlocher, Jordan, & Levine, 1994; Mix, Huttenlocher
& Levine, 1996, 2002a). Huttenlocher er al. (1994) proposed that young childrer;
develop a symbolic representation of exact number, or a mental model. In this
representation, children create an array of imagined entities that stands for each
of the actual entities in the real array. For example, children would represent a
cookie, a brownie, and a croissant with an imagined cookie, an imagined
hrowqie, and an imagined croissant, Huttenlocher et al. remained agnostic with
respect to how much detail is actually preserved in these models. That is, the
representations could consist of rich images of each object or they could be as
Sparse as a pointer. The main idea was that number is incidentally preserved
because- there is a one-to-one relation between the actual entities and their
symbols. Huttenlocher er al, did not claim that the mental model was the earliest
represeatation of quantity and allowed for the possibility that some sensiti vity to
qflantity might be present in infancy. However, contrary to the innate knowledge
views, the mental models view assuned that infants’ representations are
approximate—even if they are based on discrete individuals. Thus, the
emergence of a mental model 'was considered significant because it constituted
the earliest representation of exact number available to humans.

These claims were based on a series of experiments on young children’s
calcu]alion ability. Huttenlocher er al, (1994) used a nonverbal task in which
addition and subtraction problems were presented using concrete objects. For
€xample, to present the problem | + 2, children were shown a single block for a
few seconds before it was hidden beneath a cover, Next, two more blocks were
shown sliding under the cover. The child’s task was to produce a set of blocks
equivalent to the resulting set, even though this remained hidden from view.
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Some children were able to solve such problems as early as 30 months of age.
This is years before they receive instruction on the conventional algorithms for
addition and subtraction, and so, not surprisingly, it is also years before they
demonstrate competence on analogous problems presented in a verbal format
{i.e., as word or number fact problems) (Levine, Jordan, & Hutteniocher, 1992).
Thus, these authors concluded that children were using a nonverbal process to
represent the entities and arrive at a solution.

These experiments also documented a shift from inexact to exact responses in
the nonverbal calculation task. As noted previousty, exactly correct responses
were observed by 30-36 months of age. However, younger children (24- to
30-month-olds) did not perform randomly. Their responses were approximately
correct. Thus, these youngsters understood that adding should result in more and
subtracting should result in less, and they were able to estimate the number of
items to a certain degree of accuracy, but did not reach solutions with the
precision exhibited by slightly older children. Huttentocher er /. (1994) argued
that children who produced approximations of the correct answer did not yet
possess a mental model. This shift to exact responding was considered significanl
because it revealed an intermediary stage between the approximate quantitative
sense of infants and the advent of verbal counting. Huttenlocher et al. speculated
that further development, including the ability to deal with larger sets, wouid
require mastery of conventional skills,

Indirect evidence for this second shift, from limited but exact nonverbal
representations to more powerful verbal representations of number, was provided
in Mix’s studies of numerical equivalence (Mix, 1999ab, 2004a; Mix,
Huttenlocher, & Levine, 1996), In these studies, 3- and 4-year-olds completed
a forced choice matching task in which they chose a set of dots that was
numerically equivalent to a standard. Across experiments, the contents of the
standard sets were varied, thereby varying the degree of similarity between
the two matching sets. As we discussed previously, when the standard and the
choice sets were highly similar (e.g., all black dots), even children with Titile or
no conventional counting skill matched them correctly. Although the matching
sets in this condition were similar in many aspects besides number, accurate
performance required numerical reasoning because the distractor sets shared the
same object-based similarities as the matching sets. Also, the standard set was
hidden when the choice cards were revealed; so children had to mentatly
represent the number of objects. That young children could do so without the
counting skills needed to represent the sets verbally was further evidence that
they possessed something like a mental model.

However, it appeared that this nonverbal representation was limited in that
children could not perform more abstract comparisons using it alone. Only
children who were proficient counters also recognized equivalence between more
disparate sets (e.g., sounds and black dots). Mix and colleagues speculated that
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this pattern might reflect a deep relation between language and cohcepts—one ip
which the number words organize attention like other category labels (Mix.
1999a, 2004a; Mix, Huttenlocher, & Levine, 2002b; Sandhofer & Mix, 2003,
For example, research outside the domain of number indicates that words alern

children to possible commonalities between items and help to focus their

attention on shared dimensions {(Gelman & Markman, 1987: Gentner et al., 1995;
Sandhofer & Smith, 1999; Smith, 1993; Waxman & Markow, 1995). We have
argued that number words serve the same purpose. That is, hearing two sels
named with the same count word could prompt a comparison process that leads (o
recognition of number as a dimension of similarity. Mix, Huttenlocher, and
Levine (2002b) aiso argued that Janguage acts as a placeholder, or memory aid, as
children acquire new skills. For example, children can use the number words o
stand for the numerosity of a hidden set while they choose an equivalent set,
rather than carying out the potentially laborious process of comparing the
represented (hidden) objects and visible objects one to one.

There are parallels between these accounts and the innate knowledge accounts.
And these parallels lead to some of the same problems we have already outlined.
The main drawback remains reaching a satisfactory separation between verbal
and nonverbal contributions. In the innate knowledge models, nonverbal was
defined as whatever prelinguistic infants know. In the present models, the line is
drawn much closer to the acquisition of conventional skilis. Therefore, what
counts as verbal varies from task to task. Comparisons are made between groups
of children who demonstrate mastery of the conventional skills (related to o
]J"ll‘t!Clllal task) and those who do not. When conceptual competence is revealed
in children lacking these skills, it is attributed to a nonverbal process.

It is important to know which tasks require conventional skills. However.
demonstrating that- children do not use conventional algorithms does nol
necessarlly mean they are using a purely nonverbal process instead. We know
that by 2 years, the age at which children begin to solve nonverbal calculation
problems exactly, they have been exposed to conventional counting for many
months, have number words in their vocabularies, exhibit rudimentary counting
skills, and may understand the meanings of “one” and “two” (Fuson, 1988:
Gelman & Gallistel, 1978 Wynn', 1990, 1992). So, children’s performance on the
nonverbal calculation task could have been mediated to some extent by these
words, Perhaps children represented the hidden sets with a number word or
computed the solutions by counting, Huttenlocher ef al.’s (Huttenlocher, Jordan.
& Levine’s, 1994} finding that children first demonstrate competence on smail
number problems (e.g., | + 1) is consistent with the fact that children at this
age may know only the meanings of “one” and “two.” Maybe the shift from

approximate to exact responses reflects improved number recognition or
countmg ability.
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The same criticism could be leveled at Mix’s work on numerical equivalence.
The criterion for counting competence used in these studies has been the Give-a-
Number task (Wynn, 1990) in which children are asked to produce sets of various
numerosities (e.g., “Give me three blocks™). However, this is a high-level test
of numerical understanding because it requires children to create different set
sizes rather than simply recognize or label them (Benson & Barcody, 2003). This
is akin to assessing children’s understanding of the word “dog™ by asking them to
draw a picture of one. When children fail to match equivalent sets until they
achieve this understanding of number words, it provides strong evidence that
conventional skills are needed. However, when children match high-similarity
sets without having passed the Give-a-Number task, it does not necessarily mean
they relied on a purely nonverbal representation. They could, instead, rely on
partial knowledge of the conventional number words—a level of mastery that is
sufficient to support simple comparisons but not less obvious matches (i.e., those
with less perceptual support).

A second problem is that the interactions between verbal and nonverbal
concepts described in the experiential knowledge models are still rather broad
and unidirectional. Like the innate knowledge models, these models describe a
series of three, rather sweeping interactions: (a) nonverbal representations of
small numbers develop; (b) number words map onto these representations; (c)
children gain insights that support new concepts. These interactions are refined,
somewhat, by the hypothesis that they are driven by the same well known
processes that drive language acquisition and categorization in other domains.
However, they are still painted in broad strokes—at a grain of detail that does not
reflect the way these interactions likely unfold in real time.

3. Language and Concepts Develop Simultaneously

The models we have reviewed so far have polarized number language and
number concepts by either emphasizing the importance of one over the other or
describing broad, seesaw interactions between the two. We have pointed out that
such polarization has inherent problems—problems that have hindered research
progress on this topic. However, other models have attempted to capture the
interplay of verbal and nonverbal processes at a more detailed level (Baroody,
1892; Canobi, 2004; Fuson, 1988; Rittle-Tohnson & Siegler, 1998), These models
provide a framework for thinking about the bootstrapping of words and concepts
in real developmental tire.

To illustrate, consider the iterative model (Baroody, 1992, Baroody &
Ginsburg, 1986). In this view, numerical development is a gradual incremental
process, in which incomplete knowledge repeatedly combines with new input to
support new inferences and procedures. The model is built upon Anderson’s
(1984} distinction between weak and strong schemas, which held that
development proceeds from disconnected, task-specific, and logically incoherent
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knowledge structures (weak schemas) to well-connected, highly generalizable,
and logically coherent knowledge structures (strong schemas). Children are
hypothesized to move along this continuum by repeatedly bootstrapping among
various conventional skills and underlying concepts. The iterative model wa.
agnostic regarding innate. origins of number representation. Instead, its focus way
on the developmental process that might underlie changes from infancy to schoo!
age, with or without an innate contribution,

Several key aspects of this point of view relaie to the issues we have raised so
far. For one, it holds that conventional skills, such as counting, can be acquired
piecemeal and initially without meaning, through imitation, practice, and
reinforcement. Thus, children could be exposed to number language and develop
some mastery of it without completely understanding it. Importantly, however.
these partial understandings were considered useful, indeed crucial, contributions
to children’s learning,

For example, children with partial understanding of counting might tag items
with an idiosyncratic count word sequence (e.g., “five—three—two—three™). And
they may not understand the implications of counting for determining cardinality,
equivalence, and so forth. But as long as they know enough to say one word for
each object, their counting attempts could generate important data for them, The
fact that this idiosyncratic list might “fit” two different sets in terms of one—one
correspondence could signal that the sets were the same. This signal could
inspire further exploration of similarity between the sets. By exploring the wayx
in which these sets were similar, children might broaden their ideas abou
numerical equivalence classes. Such interactions are the essence of a genuine
bidirectional influence between language and concepts—one in which number
words and number concepts feed on each other at every point in development,
no matter how limited and immature éach side may be.

A further implication of the iterative model is that the earliest interactions
between nimber words and concepts should be couched in specific contexts. This
is because weak schemas—the starting point for development—should be task-
specific and disconnected from each other. If children acquire initial skiils
through imitation and reinforcement, then these early contexts should follow
from social routines or recurring situations in which parents have remarked on
number. For example, Baroody (1992) observed that many children learn number
words in the context of their age. They learn to say “two” or “three” when asked
how old they are. Two- and three-year-olds certainly do not grasp the concept
of years, so this is, at least initially, a meaningless mapping. But even this rote
mapping could scaffold a child into deeper understanding under the right
circumstances (e.g., learning to hold up the correct number of fingers at the
same time, which could in tum provide a conerete referent for future mapping).
These observations are significant because they demonstrate how first skills could
emerge in parent-reinforced, social routines. From this, it follows that a major
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developmental trend will be the gradual decontextualization in which both skills
and concepts become less encapsulated by these routines.

Note that this is a very different sense of decontextualization than the one
discussed by Spelke (Spelke, 2003; Spelke & Tsivkin, 20013. In her view, it is
the two mental representations of number that are initially encapsuiaied.
Although these representations can operate across a variety of contexts, and in
that sense already are decontextualized, they are encapsulated because they
function independently, as disconnected thought processes. In simultaneous or
iterative models, it is numerical competence or knowledge that is initially
encapsulated because it is embedded in specific contexts and routines. Here, the
process of decontextualization involves generalizing over these disparate
situations.

4. Conclusions

Most current models of number development fail to capture the complex
interactions between verbal and nonverbal processes. There is no definitive place
to draw the line between verbal and nonverbal, so regardless of where these
models have drawn it, they are probably not correct. Because they view
developmental change on such long time scales, verbal and nonverbal
components meet only m broad, unidirectional passes. In contrast, Baroody
{1992) and others (Canocbi, 2004; Riitle-Johnson & Siegler, 1998) have taken an
approach that emphasizes fine-grained, bidirectional interactions. From this point
of view, development involves a complex scaffolding of partial knowledge and
skills—verbal and nonverbal interacting context-to-context, moment-to-moment,
We do not mean to imply that other models are in opposition with these ideas.
Indeed, all of the conceptualizations reviewed here are compatible with an
iterative or simultaneous model. The difference is that the former, unlike the
latter, have not articulated these ideas explicitly. This is not a trivial omission,
because it leaves an artificially simplistic impression of the developmental
process underlying these interactions.

One reason that other accounts have failed to capture the complexity of number
development may be that they are based on data that tends to obscure it. Most
existing research on counting, equivalence, and cardinality has used stripped-
down experimental tasks presented to large groups of children in cross-sectional
designs. Comparing children in 6-month increments leaves the impression that
change occurs in broad strokes. When 4-year-olds succeed on a task that 3 1-year-
olds fail, it seems as if there is one knowledge state at age 3 5 years and a different
knowledge state 6 months later. This may be true, but children might pass
through many other knowledge states along the way,

Furthermore, testing children with controlled experimental tasks virtually
ensures that concepts will seem abstract because abstraction is what these
decontextualized sitnations require. Even when tasks are designed around
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i
naturalistic situations or play activities, they still are imposed by the
experimenter. Unless the experimental contexts happen to overlap completely
with the contexts in which each individual child has discovered number at home,
they will require a certain degree of generalization. Indeed, Mix (2002) argued
that these varying degrees of overlap are at the heart of the competence—
performance distinction because tasks that tap into informal knowledge at a
younger age (via serendipitous overlap with contextualized knowledge) may
appear ore valid than those that do not. However, naturalistic tasks are not
necessarily more valid than artificial tasks. In fact, artificial tasks are the best
way to test whether knowledge has been abstracted. The problem is that, on its
own, such evidence tells us little about how children got there. To address
this question, we need to take a different approach—one in which we turn up

the microscope, as Thelen and Smith (1994) put i, and study development at
close range.

III. Number Development at Close Range

Getting close to the developmental process means moving beyond large scale,
cross-sectional research to a more intense focus on the development of individual
children. This requires a shift to long-term diary, case study, and microgenetic
training designs. It requires one to consider performance both on standardized
tasks and in children’s spontaneous activity.

There is a rich history of such methods in developmental psychology,
beginning with the baby biographies of the 19th century and the bedrock research
of early theorists, such as Jean Piaget. More recently, these approaches
have yielded fascinating insights in research on language development (e.g.,
Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Mervis, 1985). The work of
Katherine Nelson, in particular, has provided a wealth of fine-grained
observations of language unfolding in the natural environment {e.g., Nelson,
1996). Her work has revealed many of the same patterns that we might expect to
find for munber development-—early event related {contextualized) knowledge
structures, idiosyncratic performance based on individual learning histories, and
in-the-moment effects of language.

Studies using such methods have periodically appeared in the domain of

number for many years. However, only recently has there been a more
concentrated effort to track number development at close range. In this section.
we review and integrate this research, with an eye toward the interaction of
language and concepts in particular. These studies provide evidence for five main
themes regarding numerical development: (1) it is contextualized; (2) it is

piecemeal; (3) it is socially scaffolded; (4) it differs across individuals; and (5) it
uses dormain general processes.
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A. NUMBER DEVELOPMENT IS CONTEXTUALIZED

The context-specificity of early development can be easy to miss when
investigators use standardized experimental tasks, because performance on these
tasks requires a certain degree of decontextnalization. Children who cannot
perform experimental tasks may have partial knowledge, deeply contextualized
knowledge, or no knowledge at all. To determine the status of these children, we
need to look at the behaviors they generate themselves.

This was the aim of a diary study that Mix (2002, 2004b) completed with her
son, Spencer, Observations were recorded from the time Spencer was 12 months
old until just after his third birthday. They focused on two main activities: {a) use
of one—ocne correspendence in spontaneous play, and (b} attempts to count and
use number words to label sets. In addition to the diary observations, Spencer was
tested using standardized numerical equivalence and counting tasks on a monthly
basis, beginning at 20 months of age. Competence in both nonverbal and verbal
aspects of number was evident very early in Spencer’s development. However, in
both cases, this competence was highly contextualized.

This contextualization was evident in his understanding of numerical
equivalence. For many months early in the study, he experienced one-to-one
correspondence in his play—handing out toys te other children, touching
objects one by one, or taking twrns in simple games and routines, These
activities did not require explicit understanding of numerical equivalence, but
likely provided important data for the development of such an understanding. At
20 months, he spontaneously produced a set of objects that was equal in number
to another set hidden from view. Specifically, he took exactly two dog treats for
his two dogs, waiting in another room. This was not a coinctdence. Over 3
weeks, he repeatedly performed the same task with almost perfect accuracy
using different-sized treats. Yet, he was unable to perform the same task when
the context changed. He failed Mix’s (1999a,b) forced choice matching task—
even for the numerosity “two.” And, he failed on a slight variation on the dog
treat task, one in which he was asked to give his toy trains “train treats.”
Spencer did not explicitly match sets in any other situations until he was 30
months old, when he went into the backyard and returned with three sticks, one
for each person sitting at the dinner table (i.e., his two parents and a dinner
guest). Like children in previous cross-sectional studies, Spencer began
matching sets in the forced choice equivalence task starting at 34 months,
with high-gimilarity (disks-to-dots) comparisons first. Unfortunately, the diary
study concluded soon after that, so we do not know whether spontaneous
matches increased around the same time that his notions of numerical
equivalence became decontextualized.

During the same developmental period, Spencer’s acquisition of small
number words was similarly contextualized (Mix, 2004b), His earliest uses of
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the number words did not actually reference sets of objects. Instead, he used
number words to label written numerals. This began with the numerals that
appeared in several of his board books, but he eventually came to recognize
numerals on signs, license plates, and addresses as well. At 23 months, he began
using number words to label sets of objects. His first mappings were restricted
to the number “two™ and they always occurred within a particular linguistic
frame: “Two ___ , One. Two.” For about a week, he labeled only sets of shoes
using this frame (i.e, “Two shoes. One. Two.”). Then he extended to other
object sets, including two dogs, two spoons, and two straws, using the same
frame. At 24 months, he began using the variant . s tWo " For
example, for two trains, he would say, “Train. Train. Two trains.” This frame
appeared frequentty for the next 6 weeks and, during this period, he did not
label sets numerically without using it. Fuson {1988) reported that her daughter
Adrienne used the same frame at age 22 months.

Throughout this period, Spencer failed ail tests of conventional counting. In the
Give-a-Number test, he failed to produce two objects on request and when asked
how many objects were in a set of two, he responded with an idiosyncratic string
of number words. Thus, although he correctly labeled different sets of two, his use
of the number word “two™ was far from decontextualized. In fact, it was deeply
contextualized in two ways. First, it was initially restricted to specific situations—
first labeling numerals, then labeling shoes. Second, these early attempts were
embedded in specific linguistic frames. A similar pattern was reported in another
diary study that tracked the number development of a young boy, Blake, from 18
to 49 months of age (Benson & Baroody, 2002). Blake’s first number word alse

was “two” and he used it, initially, only when asked his age. His parents had

reinforced this response in preparation for his upcoming birthclay Although this
was a simple association without cardinal meaning, it is noteworthy that his first
use of a number word occurred in this, and only this situation.

Both boys also overgeneralized the response “two” to the question “How
many?” That is, regardless of a set’s numerosity, when asked informally how
many items were there, both boys tended to say, “two.” This was true even
though both boys spontaneously labeled sets of one and two correctly, The
following excerpt from Spencer’s diary (Mix, 2004b) illustrates this tension;

(5/24/01; 26 months} While Spencer was taking a bath, I threw in one toy fish. Then ]
added twa frogs, one by one. Spencer remarked, “Oh! Two frogs!" Then I threw in
a third frog. Spencer said, “Ch! One frog and two frogs.” I asked, “How many frogs all
together?” He responded, “Twao frogs.” [ replied, “No, three frogs.”

A liutle later, Spencer spontaneously asserted, “Two frogs.” | replied, “No, three frogs.”
He countered, “No, one frog, one frog, one frog, and one fish.” | asked, “How many is
that?" His response: “Fish need water.”

Although Spencer correctly labeled sets of one and two, he insisted that there
were two frogs when queried, The fact that both he and Blake spontaneously
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generated correct labels for one and two suggests that these overgeneralization
errors were specifically embedded in the “How many?” routine. Perhaps Spencer
and Blake viewed the guestion “How many?” as part of a script where the other
person always answers, “two,” presumably because they had been reinforced tor
this response when it was correct.

B. NUMBER DEVELOPMENT IS PIECEMEAL

One of the most siriking patterns to emerge from diary and longitudinal
research is that acquisition of the number words has a distinct stepwise or
piecemeal quality (Benson & Baroody, 2002; Fuson, 1988; Mix, 2004b;
Sandhofer & Mix, 2003; Wagner & Walters, 1982; Wynn, 1992). For example,
when Wynn (1992) tracked children’s development uvsing a variety of
standardized tasks, she found that the number words were acquired in discrete
stages. In the first stage, children can give one object on request and also
identify which of two cards shows only one object (mean age = 33 months).
Children at this level did not point to a single object when queried with other
number words. For example, given a card with one fish vs. a card with two fish,
these children never pointed to the card with one fish when asked to point to
two. In fact, they consistently inferred that the “not one” option (i.e., the card
with multiple items) was the referent of words other than “one.” However, this
did not reflect knowledge about the specific cardinal meanings of these words,
because the same children performed randomly when both cards depicted
multiple items (e.g., two vs. three). Thus, Wynn concluded that children first
discover the difference between “one” and “more than cne.” In the second stage
(mean apge = 35-37 months), children correctly produced and identified sets of
one and two, but failed to distingnish among larger numerosities. Within a few
more months {mean age = 38~40 months), children correctly identified sets of
three as well. Finally, children were able to produce and identify all the sets in
their counting range (ie., four and greater) at about the same time {(mean
age = 42 months).

Wynn's (1992) study indicates that number words are acquired in a piecemeal
fashion. However, as we have already discussed, this development beging
much earlier than the ages tapped by her tasks. Diary research demonstrates
that children start sorting out the meanings of “one” and “two” in specific
contexts around their second birthdays or even earlier (Benson & Baroody, 2002;
Fuson, 1988; Mix, 2004b). This is 9 months before children demonstrated an
understanding of *“one™ and 13 months before they demonstrated an under-
standing of “two” in Wynn's research. Moreover, the diary studies suggest that
rather than leading with the number “one,” it is the number “two” that may have
gpecial status in very early development. All three studies reported that functional
use of the word “two” preceded functional use of “one.” Also, Spencer labeled
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sets of two much more frequently (five times more) than sets of one (Mix, 2004b),
Finally, whereas these children usually labeled both “one’ and “two™ accurately,
they tended to overgeneralize the label “two” when queried by adults.

Labels for larger sets (i.e., three and four) appeared in children’s spontaneous
utterances several months after the appearance of “one” and “two” {Benson &
Baroody, 2002; Mix, 2004b). Although some overgeneralization of the word
“three” was observed, children were generally accurate from early on (29 months
of age in Spencer’s case). Perfect functional use of the word “three” was evident
before perfect use of the word, “four,” but these milestones occurred relatively
close in time (within weeks for Spencer). Thus, as Wynn cbserved, there was a
stagelike progression in the emergence of informal mappings for the small
number words. However, in contrast to Wynn's findings, the order of emergence
was different (i.e., two appeared before one), the separation of the stages was less
apparent, especially for one and two, and the ages of acquisition were very
discrepant. Specifically, by roughly the same age as the children Wynn (1992)
classified as Stage I (i.e., those who demonstrated only an understanding of ane
vs. more than one), Blake had already demonstrated highly accurate use of both
“one” and “two,” and Spencer had done so for all the small number words, “one”
through “three.”

Although it is not entirely clear why children would repeat the same sequence
in Wynn’s (1992) standardized tasks that they appear to pass through in informal
labeling, it seems certain that the standardized tasks did not provide the same
scaffolding that children have when they label sets themselves. In other words,
we might ask why certain everyday situations seem to draw comect numerical
labeting out of children earlier than the Give-a-Number or Point-to-X tasks used
by Wynn, The diary data suggest that labeling pairs of observable objects is what
gets the ball rolling. As we noted, children label sets of two earliest, most
frequently, and with great accuracy. Furthermore, the vast majority of sets they
label consist of observable objects (rather than mentally represented or
remembered objects) (Mix, 2004b). So, what makes this situation special?

Mix (2004b) speculated that the answer may be a coincidence between limits on
children’s comparison ability and an initial misinterpretation of the word “two.” In
the following excerpts, Spencer incorrectly extended his number frame for “two”
to larger sets. Such errors were rare, so it was not the case that he routinely
mislabeled larger sets “two,” as if he dock the word to mean “many.” Instead, the
following anecdotes suggest that for Spencer, the word “two™ had more to do with
the similarity among items in a set than it did with their cardinal number:;

2/10/01 We had a carpet sample board with about 20 carpel squares. Spencer
remarked, “Blue!” Then, he slapped the board 5 times, contacting 8 squares,
while saying “A blue” with each slap. Then he said, “Two blues.”

2f24/01 Spencer pointed at each of the three living room windows and said, “Window,
window, window, Two windows.”
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3/8/01 Spencer saw three apples on the ﬂining room table and said, “Apple. Apple.
Apple. Two apples.”

Clearly, Spencer was aware of the similarity among items in these sets and
acknowledged it, both by tagging each item through touch or pointing, and by
labeling each item with the same name. The fact that he summed up these
comments with the number word, “two,” regardless of the set’s actual size,
suggests that he misinterpreted “two” to mean “same.” This would be a sensible
emror, given that number words apply to groups of things that share some
commonality. Furthermore, there is little in the input to indicate that “twe™ ar any
other number word refers to number in particular, rather than something like
“again,” “another,” or “same.”

But why use only “two” this way, and not the rest of the number words? One
reason might be the relative ease of comparing two items. If it is easier to
determine that two objects are the same than it is to evaluate the similarity of three
or more items, then a child would be more likely to comment on similarity for sets
of two. Once children can make more complex comparisoas (i.e., when they begin
to see similarity for larger sets), they may refer to this similarity as “two,” simply
because “same thing” is already a major part of what “two” means to them.
Exposure to the homonym “too™ might further reinforce this misinterpretation.
Young children have no way to know that “two” and “too” are different words.
Sentences such as, “Mary wants a cookie, too,” might provide additional
(erroneous) evidence that “two” means something like “another.”

Because young children may conflate “two™ and “same,” it is difficult to say
whether their early uses of “two” refer to cardinal number at all. Although
Spencer and Blake used the words “two” and “one” discriminately, this
discrimination could have been based on the need to comment on similarity, or
lack thereof. That is, there would be no reason to say “same” for a single object.
Perhaps that is why children fail to demonstrate an understanding of “two’” in
Wynn's (1992) tasks even though they use it with great accuracy in these
informal labeling situations. Clear evidence for the separation of cardinality and
similarity would require discriminate use of different words for multiples, such as
“two” and “three”——a development that seems to take an additional 6 months to
achieve informally, yet still appears to precede Wynn's Stage II by a considerable
margin.

The discrepancy between Wynn's (1992) findings and the diary results is a
prime example of why verbal and nonverbal change cannot be separated
developmentally. Although it could be argued that children do not really
understand “two” until they can perform Wynn’s tasks, and in that sense are
still nonverbal with respect to number, it is equally true that they do not
develop these understandings in a verbal vacuum. Children are clearly
experimenting with the number words, usually with success, for many months
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before they appear to understand them in more structured tasks. This means
that the “nonverbal” referents for specific numerosities may well be shaped or
even created by éxposure to the number words. These partial mappings, in
turn, are likely to scaffold deeper understanding of the number words
themselves. .

During the same period that children acquire the pieces of verbal cardinality.
notions of numerical equivalence alse emerge in a stepwise manner. As noted
previously, cross-seciional research has indicated that the ability to match
equivalent sets begins with high-gimilarity matches between 30 and 36 months.
and gradually extends to more disparate comparisons {(Huttenlocher, Jordan, &
Levine, 1994; Mix, 1999a,b, 2004a). Children cannot completely ignore object
similarity in favor of numerical equivalence for another two years, until 5 years

of age (Mix, 2004a). This pattern was also revealed in a longitudinal study ol

children’s number development (Sandhofer & Mix, 2003). Children were tested
once a month from 36 to 54 months of age. They completed several versions of
the forced choice number matching task that ranged from high-similarity
comparisons (i.e., black disks to black dots) to low similarity comparisons
(e.g., puppet jumps to black dots). As in previous cross-sectional research,
children did not succeed on the full range of comparisons all at once. Instead.
suecess in the high-similarity conditions always preceded success in the low-
similarity conditions. There also were effects of set size.. Children matched
equivalent sets that were small (1-4) over a year before they matched
larger sets (5—8). These patterns were replicated in Spencer’s diary data as well
(Mix, 2004b).

Taken together, longitudindl and diary research indjcates that partial
number” competence emerges long before reliable performance on exper-
imenta] tasks (Baroody, Benson, & Lai, 2003; Benson & Baroody, 2002;
Mix, 2002). During this period of growing competence, children gradually
gather pieces of both verbal and nonverbal understanding. Although we can
attempt to study these components separately using verbal or nonverbal tasks,
aspects of the two are always present, tightly intertwined in developmental
time, )

But does this mean they are integrated in the child’s mind? The answer
depends on what is meant by “integrated.” The complete integration of number
words, counting, and all the possible instantiations of numerosity is the
culmination of numerical develepment—an apex that is not achieved for several
vears, Yet, there is likely an ongoing bidirectional influence of partial knowledge
across the verbal-nonverbal divide well before this achievement. Are these
piecemeal interactions integrated from the child’s perspective? Perhaps, but only
within specific contexts. For example, saying *Two shoes, One. Two,” implies an
integrafion of counting and cardinality. Though not the same as having
decontextualized, principled knowledge of this relation, this may reflect an
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explicit integration within that context, just the same. Alternatively, interactions
involving partial understanding may not reflect explicit integration, even though
they could be a large part of what bootstraps children into such levels of
understanding.

C. NUMBER DEVELOPMENT IS SOCIALLY SCAFFOLDED

In our discussion of contextualization, we pointed out the extent to which
children’s early number knowledge is tied to specific sitnations. We speculated
that one reason competence emerged in these contexts and not others was the high
similarity between items in those sets. However, another guality shared by many of
these situations was a high degree of social scaffolding and reinforcement. In fact,
naturalistic observations have revealed time and again that numerical under-
standings emerge first in social games and routines (Benson & Baroedy, 2002;
Mix, 2002, 2004b)—-a basic fact overlooked by research using standardized tasks.
For example, when Spencer succeeded in matching treats to dogs, he was likely
imitating a routine he had seen his parents perform every day. This maiching
activity also was an extension of a socially mediated one-to-one correspondence
activity he had been spontaneously performing for months—unamely, distributing
objects (Mix, 2002). Rather than aligning objects, as in matching teacups to
saucers, Spencer’s most frequent one—one activity was handing out objects to
people, dolls, or animals. Mix speculated that Spencer was reinforced for this
activity by the attention and positive social interactions he experienced as the
distributor. :

Spencer’s number word learning also occurred within various social routines
(Mix, 2004b). For example, a series of conversations about number arose within
the daily routine of taking vitamins, Spencer liked the taste of his chewable
vitamins and would have eaten more, but he was only allowed to have one per
day. Consider the following excerpts:

(3/21/01; 26 months) As Spencer was feeding me toast, he said, “Just one, Mommy,”
—the same thing I say when I give him his vitamin.

(3724401, 26 months)

KS8M: Do you want a vitamin?

S: Yeah

KSM: Okay, here you go. Just one vitamin,

§: No! Twe vitamins (smiling).

(3/30/01; 26 months) When offered a choice of two vitamins, Spencer tried to take
them both, But he smiled and said, “Two. Twe vitamins.”

(4/6/01; 26 months)

KSM: Would you like a vitamin?

5: Just one!

KSM: Right! Yust one vitamin a day.
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S: Just s (smiling).
KSM: No, just one.
S: No, just two (smiling).

These excerpts illustrate how Spencer’s early comments on cardinality were
couched in familiar, recurring contexts that highlighted number. This context was
not supportive simply because he encountered the same objects. It was a social
situation for which talking about number served a function—it might get him
another vitamin and, failing that, it might make his mother laugh.

Similar contextual support was provided in Spencer’s acquisition of the
counting sequence. Starting at 23 months of age, he frequently participated in a
counfing, turn-taking game with his father. For example, if his father said, “One,”
Spencer would respond “Two.™ His father would then say, “Three,” and Spencer
would reply, “Four.” They would continue this way as high as Spencer could count.
These episodes provided a considerable amount of the overt practice Spencer had
with the counting sequence—practice he could not have had without a partner.

Social routines such as these invite observational learning and imitation—
processes that could start the ball rolling in number development. Such processes
were evident in the vitamin excerpts, presented previously. Spencer’s first
comment on cardinality in this context was an exact mimicry of what had been

- said to him, morning after morning, for months (i.e., “Just one.”), The frames he
used te comment on number (e.g., “Two ___. One. Two™) also started out as
imitations. His babysitter had used the counting frame for weeks to label sets
around the house, including sets of shoes. So, Spencer’s use of this frame to Iabel
sets of shoes was no accident. It was a direct imitation of what he had heard said
in the same context. He learned that you announce “Two shoes. One. Two,” in the
presence of shoes just like he learned that when you see a phone, you put it to
your ear and start talking.

One final aspect of social scaffolding for number bears comment. Empiricist
accounts of development are sometimes criticized because they seem to require
effortful instruction and reinforcement on the part of the “teacher,” Howaver,
potent forms of reinforcement arise in social interactions without requiring
planned rewards or punishments. Many of Spencer’s comments seemed to be
trial balloons that he sent up to see what ideas would be accepted. An example
was when he insisted that there were two frogs in the bathtub, He did not need
concrete punishment, like a rat requires a shock, to know whether his thinking
was on track. The correction that followed was feedback enough. Similarly, the
counting game he played with his father did not ori ginate in an explicit attempt
to teach Spencer the counting sequence. It was a mutually enjoyable social
activity that the two of them invented together and rewarded each other for
continuning.

Blake's diary (Benson & Baroody, 2002) provides an excellent example of yet
another form of positive reinforcement—the reward that comes from making
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oneself understood. When he was 27 months old, his mother asked him whether
he wanted to drink milk or water. He first replied, “milk,” but then said, “water.”
Unsure how to respond, his mother asked, *Which do you want, milk or water?”
Blake replied, “Two,” indicating that he wanted both. His use of the number waord
was rewarded when he received the drinks he had requested. No further feedback
or effertful instruction was required—the functionality of that word in that
context was sufficient to create the behavior.

D. NUMBER DEVELOPMENT DIFFERS ACROSS INDIVIDUALS

Close range examinations of numerical development have revealed a fourth
trend—different children develop the same understandings in different ways. In a
longitudinal study of counting and numerical equivalence concepts, we identified
two different patterns of interaction between verbal and nonverbal competence
(Sandhofer & Mix, 2003). For one group of children, development was seemingly
led by verbal skills (see Figure ). These children demonstrated counting
proficiency earlier than the rest of the group, with most of them accurately
producing all of the small sets (2, 3, and 4} on request, at or near the beginning of
the study. Even more striking was that they did so before they could match
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Fig. 1. Average session by which All Verbal children atiained above chunce performance in
Sandhofer and Mix's (Sandhofer & Mix, 2003) longitudina! stuy of counting and nwmerical
equivalence,
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equivalent sets for any of the same set sizes. When they finally did match
equivalent sets, an average of 2 months later, they did so for all the small set sizes
at once. Thus, for these children, number development involved ascribing
meaning to the smalt number words without forming categories for them, and
then forming these categories all at once.

For a second group of children, the emergence of verbal and nonverbal skilis
was interleaved (see Figure 2). These children reached proficient levels for both
verbal and nonverbal tasks one nimerosity at a time, over a period of about 6
months. This pattern suggested that children worked out the meaning of each
number word, including its corresponding equivalence class, before moving on to
the next—a very different course than that obtained for children who focused on
verbal skills first,

We speculated that these different patterns reflected differences in the learning
histories of each child (Sandhofer & Mix, 2003). Both of our experimental tasks
measured children’s reasoning at a high level of abstraction. In the verbal task,
children produced sets of blocks on request. In the matching task, they identified
equivalent sets that were otherwise quite disparate. Verbal competence led this
form of nonverbal competence in both groups, indicating that verbal skills were
abstracted first and then used to abstract the children’s contextualized notions of
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Fig. 2. Average session by which Number-by-Number children attained above chance performance
in Sandhofer and Mix's (Sandhofer & Mix, 2003) longitudinal study of cownting and numerical
equivalence.
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equivalence. The interesting difference between the two groups was that the
Number-by-Number children (i.e.. the second pattern) seemed to have a weak
sense of number categories waiting in the wings—presumably constructed
through experience with object sets and still somewhat contextnalized. So,
although children with this learning history were slower to abstract the verbal
labels, each time they did, they were immediately able to abstract the
corresponding number category as well. The All Verbal children (the first
pattern) seemed to lack these weak number categories. Perhaps most of their
number input had been focused on counting and number words, rather than
one-to-one correspondence or play with matching sets.

E. NUMBER DEVELOPMENT IS DOMAIN GENERAL

We began this chapter by analyzing what number concepts entail, including
both verbal and nonverbal components. Viewed this way, a main challenge to
young learners is integrating these components—mapping cne to another in a
complex web of skills, situations, and ideas. Like any other mapping, numerical
mappings are likely to involve noticing similarity, isolating relevant points of
alignment, forming categories, and pairing words with referents. In other words,
there is no reason to think that numerical development should be special, except
that it may be especially difficult given the number of mappings required and
the lack of obvious cues. Mix (Mix, 1999a,b, 2004a) has argued previously that
domain general processes of comparison underlie the development of numerical
equivalence judgments. In this section, we consider whether they also underlie
verbal mappings.

The diary and longitudinal studies we have described so far provide several
indications that they do. First, several trends observed in number development
resemble those seen in the development of other concepts, such as colar. For
example, recall Wynn's (1992) finding that children realize the number words
refer to numerosity before they know the specific cardinal meanings of these
words. The same pattern is evident in children tearning color terms. That is, they
first realize that the color words as a group refer to the dimension of color
{Backscheider & Shatz, 1993; Landan & Gleitman, 1985; Sandhofer & -Smith,
1999). At 27 months, children asked, “what color?”’ respond with a color werd,
albeit, usually the wrong one. Within a few months, they begin to provide specific
words for specific colors, For example children label red apples as “red” and blue
balls as “blue,” but may incorrectly label yellow balls as “purple.”

Another domain general trend in number development is that local mappings
precede the formation of equivalence classes. Recall that both Blake and Spencer
spontaneously labeled various object sets containing the same number of items
for many months before they could match equivalent sets in a forced choice task
(Benson & Baroody, 2002; Mix, 2004b). The same pattern has been observed in
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children learning color terms. For example, Smith (1984) reported that although
2-year-olds correctly tabeled objects in terms of color, they were unable to match
objects by color when the objects differed on other dimensions, such as size,

This might seem counterintuitive, After ali, doesn’t correctly labeling a flower,
a car, and a drink with the word, “red,” imply that you know that these objects are
of the same color? Not necessarily. Further, research using a connectionist model
demonstrated that these two senses of same are quite distinet, Smith, Gasser, and
Sandhofer (1997) trained a network to label three properties of a given input., For
example, given a simooth red triangle, and asked, “What color is it?” the network
learned to respond “red” and when asked “What shape is it?” the network learned
to respond, “triangle.” However, even after learning to label objects by color the
network failed to represent objects that were the same on a given property as
equivalent. That is, when the network was asked, “What color is it?” and was
presented with a smooth red triangle, the pattern of activation on the hidden layer
was different than when the network was presented with a bumpy red square and
asked “What color is it?” The network apparently failed to isolate the property of
color and continued to represent aspects of the shape and texture of the objects
even though these were irrelevant to the task at hand.

The order of the mappings children perforny for number also reveals some
interesting domain géneral connections. First, like number categories, color
equivalence classes are affected by the degree of similarity between objects.
When the target and choice objects are highly similar, for example a red airplane
and a similar red airplane, even children who do not comprehend color terms can
match these objects by color (Soja, 1994), When the target and choice objects are
tess similar or when there is competing similarity from a distractor object,
children fail to match objects by color until long after they have learned to
comprehend and produce color terms correctly (Rice, 1980; Sandhofer & Smith,
1999; Smith, 1984). This is precisely the same pattern we described previously
for numerical equivalence judgments, number words, and object similarity.

A second ordering of interest involves first uses of the number words. Both
Spencer and Blake mapped the number words onto written numerals early in
development. In fact, these constituted Spencer’s first number word mappings.
This makes sense given that children tend to interpret new words in terms of
shape as their vocabularies increase (Smith et al., 2002), Indeed, children with a
strong shape bias can identify more letters of the alphabet than children who lack
the shape bias, presumably because learning letter names requires careful
attention to shape (Longfield, 2004). When children map number words 1o
written numerals, they may be-extending the shape bias to numbers. After all.
numerals have a consistent shape. Numerically equivalent sets do not.

Finally, Spencer’s use of number frames is reminiscent of children’s use of
pivet grammar more generally. Bloom (1993) noted that children often use the
same simple sentence structures to incorporate new vocabulary. For example.
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they might learn the frame “Give ___ " to request items and then use this
frame repeatedly as they acquire new words (e.g., “Give milk,” “Give toy,” “Give
cookie,” etc.). Spencer’s number frames have much the same quality. They
provided a way for him to incorporate new sets into his category of “twoness.”

Thus, we see many parallels between number development and development
in other domains. In particular, number word learning looks quite a fot like other
word learning—it starts out with loose associations between the words as a group
and the broad dimension they describe; it involves overgeneralization (i.e.,
imtially referring to many numerosities as “two”), an initial bias toward shape,
and the transient use of pivot grammars; and it is built from local mappings
without reference to a larger equivalence class.

The significance of these parallels is that they indicate common underlying
processes. When children associate number words with the dimension of number,
they are likely responding to patterns in linguistic input as they do when learning
other words (Bloom & Wynn, 1997). When chitdren map number words to shape,
they are using the same strategy that works in other word learning situations (e.g.,
Landau, Smith, & Jones, 1988; Smith, Jones, & Landau, 1992). When they
overgeneralize, they are struggling to reconcile their understanding of the
undertying categories with the socially accepted categories to which words refer
(e.g., Mervis, 1985). These parallels provide important insights into the
mechanisms by which children integrate number language with conceptual
understanding—mechanisms that we consider in Section IV of this chapter.

IV. Toward a Mechanistic Account

All current conceptualizations of numerical development hold that there is a
bidirectional influence between number words and number concepts. Even those
models that assume a considerable innate component concede that the mapping
between verbal and nonverbal knowledge precipitates significant conceptual
growth. These accounts contribute by speculating about possible fit {or lack
thereof) between nonverbal and verbal representations. However, the claim
itself—that verbal nurnber maps onto nonverbal number and leads to conceptual
change—is not an advance. It neither distinguishes current conceptualizations
from those that came before nor provides insight into the details of how
these interactions occur. In fact, these accounts may mislead by leaving the false
impression that mapping number words onto number concepts is more discrete
and unidirectional than it actually is.

When we look at number development close up, there are no clean, wholesale
mappings from skill to understanding, from word to concept. Instead, we uncover
a multitude of disconnected, local mappings, successfully achieved with a great
deal of contextual and social support, gradually coalescing into a fully integrated
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conceptual structure. This process can seem messy. It may be tenipting to gloss
over the details for the sake of theoretical clari ty. However, it is from these details
that we can see traces of the learnin g mechanisms that underlie the achievement of
mature number concepts. In order to explain how number development unfolds, it
will be necessary to embrace this complexity and the mechanisms it reveals,

The mechanisms revealed so far are not new and they are not specific to
number. Indeed, they take us right back to the classics. For example, it is difficult
to think of a better way to characterize early number development than that
provided by the Vygotskian framework. In this view, learning proceeds through
successive stages of socialization. Children first imitate routines that have no
meaning to the child beyond their social function. Qver time, children internalize
these routines, and the associated language, until words, context, and concepis
become inextricably merged. As children assimilate verbal procedures into their
thinking, they gain access to more powerful conceptual structures that allow them
to evaluate or invent new procedures. Even so, they never completely abandon
nonverbal thought., Qur reviey'v of early number development, particularly the
didry, case, and microgenetic studies, provided many examples of this type of
learring, If we want to know specifically how children make initial mappings
among the verbal and nonverbal components of number, Vygotsky’s ideas
provide. a very good start.

There is also abundant evidence of empiricist learning processes. Children

often started out imitating what they had observed in specific number-relevant
situations. They initially mapped words onto object sets that they could
perceive—not necessarily to representations of those sets. Their attempts to
generalize beyond these situations were shaped by social approval and successful
communication. Individual differences in number development suggest varia-
tions in the specific patterns of input and interactions in children’s learning
histories. Although this may not be all there is to number development,
‘observational learning, associative learning, and conditioning are obviously
a significant part of it. Indeed, the burden facing those who would argue for
domain-specific learning is to explain why empiricist processes and social
scaffolding are not sufficient on their own.

Of course, simply establishing that these processes underlie development is
only a start. Much remains to be learned about the specific ways they are
implemented in number learning. For example, if children hook into number
words by imitating social scripts, then the next step is to analyze these scripts
more closely. One basic question is why children enact some scripts and not
others. By isolating and comparing the situations that are numerically meaningful
to children, we can determine which sitnational cues direct attention toward
number in particular. These mi ght include specific spatial or temporal relations,
linguistic cues, or social referencing cues. Such an analysis would also indicate
‘whether non-numerical understandings, such as recognizing similarity, or

Number Words and Number Concepts 34

ordering and grouping objects, help to scaffold numerical insights because
different contexts will vary in the degree to which this information is either
provided or required.

Another line of inquiry could focus on consistency across individuals. That s,
do most children make their first number word mappings in similar contexis? Do
they often name numerals, as Spencer did? Or do they first map number words 1o
fingers, held up to represent their age, like Blake? If 80, then it will be important
to look especially closely at these contexts to explain their widespread use. Such
universal appeal would indicate either considerable emphasis or repetition in the
environment, a particularly good match to the child’s cognitive capacities, or
both. Perhaps there are several classes of situations different children use
initially. If se, it would be possible to trace the origins of multiple pathways,
similar to those we described for the case of cardinality and equivalence
(Sandhofer & Mijx, 2003).

Finally, researchers might ask about the structure and content of parent input.
The notion that children first bring meaning to number words through imitation
presupposes a major role for parents because it is they who provide social
rontines to imitate. If nothing else, their input sets limits on the universe of
possible situations children can access. However, parent input likely makes &
more profound contribution by structuring children’s learnin g environments and
directing their attention within them. For sotme routines, such as holding fingers
up for age, parents probably teach children explicitly as part of a larger social
context (i.e., occasions when new acquaintances will ask how old they are). Other
routines may evolve from different social needs, such as sharing, or simply
emerge as the parent comments on the environment (e.g., “Oh look! Ducks! Two
ducks!™). Because these routines are pivotal in children’s numerical develop-
ment, it is important to know which routines parents present to children, what
might lead to the creation of these routines (i.e., why these routines and not
others?), and which of these routines children adopt themselves, This will tell us
not only how the child’s environment is structured, but also something about why
it is structured that way.

It has been argued that adult intelligence is based not only on the brain but also
on the environment in which the brain operates {e.g., Clark, 1997). The
development of intelligence in children can be viewed the same way—as the
emergence of increasingly smart, adaptive behaviors within an indivisible systen
of neural processes and environmental structure (Thelen & Smith, 1994), The
iterative view embraces this model of conceptual change, compelling us to look.
beyond the boundaries of the child to explain how number concepts develop and
focus instead on the close-knit interactions among numerical understanding,
language, and social activity. Understanding these interactions will be time-
consuming and complicated. Tt will require more than the typical, cross-sectionat
laboratory experiment, forcing us to find new and creative approaches. But the
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reward will be a deeper understanding of the way number words and number
concepts reatly interact, moment-to-moment, in ail their unruly complexity.
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