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From year to year, species after species, ever more specialised mental organs

have blossomed within the brain to better process the enormous ¯ux of

sensory information received, and to adapt the organism's reactions to

competitive or even hostile environments. One of the brain's specialised

mental organs is a primitive number processor that pre®gures, without quite

matching it, the arithmetic that is taught in our schools . . . This ``number

sense'' provides animals and humans alike with a direct intuition of what

numbers mean.

(Dehaene, 1997, pp. 4±5)

I began this article by asking how we come to have knowledge of number. I

hope to have provided the answer ± we are built speci®cally to do so.

(Wynn, 1998, p. 302)

In its simplest form, the question of domain speci®city asks only: When
people process information, do they use speci®c processes for speci®c tasks,
or do they use general purpose processes for many different tasks? For
those who study adult cognition, this question is relatively straightforward.
But for those who study cognitive development, domain speci®city has
taken on special meaning because it has been invoked to explain not only
how information is processed, but also how concepts originate and how
learning takes place. Domain speci®city is often linked with nativism,
leading to the proposal that human infants have instinctive or core knowl-
edge for certain domains that gives us a leg up in learning (Chomsky, 1980;
Dehaene, 1997; Fodor, 1983; Gelman, 1990; Leslie, 1994; Spelke & Tsivkin,
2001; Wynn, 1998). In this chapter, we evaluate the evidence regarding one
such domain: number. Do humans need a number sense to learn the
meanings of small numbers, or can domain general processes better explain
what we already know about this process?

Do we need special help for number learning?

Domain speci®c accounts of numerical development often begin with the
assertion that number learning would be dif®cult, if not impossible, without



the help of a domain speci®c mechanism (Gelman, 1991; Spelke & Tsivkin,
2001). As Spelke and Tsivkin put it, ``Number is arguably our most abstract
system of knowledge . . . How can children ever come to understand
counting if they do not already understand the entities that counting singles
out?'' (p. 84).

This assertion has merit because the property of numerosity, though
omnipresent, is not particularly obvious. Consider, for example, what is
required to learn the meaning of ``three.'' As Quine (1960) pointed out, the
referents for concrete nouns, like ``rabbit,'' are remarkably indeterminate on
closer analysis. But for attributes like threeness, the indeterminacy problem
is even more profound. Because number is a property of sets, there is not an
object to point toward. Instead, the boundaries of a collection must be
established before it, as an entity, can act as a referent for a count word.
There also is extraneous information to ignore. To learn what ``three''
means, children must ignore the properties of each individual object in the
collection, just as they must ignore the speci®c properties of a rabbit, such as
soft and furry, to learn the word ``rabbit.'' However, they must also ignore
properties of the collection as a whole, such as its total length, density,
or area.

Beyond isolating the property of number, young learners also must
recognize numerical equivalence classes for each set size and learn what to
call these groups. Forming equivalence classes requires the realization that
diverse individuals with a range of distinctive features are somehow alike.
So, just as children come to see many breeds of rabbit as similar, they also
must see many collections of three as similar. However, unlike rabbits,
collections of three may bear little, if any, resemblance to one another.
Consider the commonalities between three planets and three jumps. To
learn the names for these equivalence classes, children must map the
words in their native language to the abstract ideas to which they refer. But,
unlike the names for nouns and other attributes, children learn the count
words as part of the counting sequence, as well as learning them as labels
for different set sizes. Thus, to understand the meaning of ``three,'' they
must sort out both these and many other meanings and usages of numerals
and number words (see Mix, Sandhofer & Baroody, 2005, for further
discussion).

Clearly, number learning has unique challenges. But does this mean that
it requires unique processes? Some have argued that without number-
speci®c representations built in, children would be unable to surmount the
complexity of the number learning problem.

Domain specific models of number development

Over the past 20 years, two models have emerged as the leading domain
speci®c explanations for early numerical development: Skeletal Principles
and Core Knowledge.
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Skeletal principles

On this view, number learning is guided by counting principles that are
embodied in an innate representation for number called the accumulator
mechanism (Gallistel & Gelman, 1992; Gelman, 1991). This mechanism
works by emitting pulses of energy at a constant rate. When an item is
counted, a gate opens that passes energy into a storage unit (i.e., an
accumulator). Although there is not a one-to-one relation between pulses
and items, the amount of energy per item is roughly equal. Thus, the
resulting fullness of an accumulator represents the cardinality of the set. It
has been argued that accumulators are used to remember set sizes, compare
one set to another (e.g., 3 > 2), and solve calculation problems (e.g., 1 � 2 =
?) (e.g., Wynn, 1995, 1998; Gelman, 1991). The accumulator representation
has no upper limit. However, as magnitude increases, the variability, or
noise, around the exact numerosities increases. Therefore, in accordance
with Weber's law, discriminability decreases as either the set sizes increase,
the difference between set sizes decreases, or both.

A key claim is that the accumulator representation operates according to
the same principles as verbal counting (Gallistel & Gelman, 1992; Gelman,
1991). For example, to count a set of pebbles verbally, one tags each pebble
once and only once with a count word (one-to-one principle). If a pebble is
omitted, or is tagged more than once, the last count word will not represent
the cardinality of the set. According to the skeletal principles view, the
accumulator also obeys the one-to-one principle because energy is gated into
the accumulator once and only once for each item. It has been argued that
the accumulator obeys all ®ve counting principles, including this and stable
order, cardinality, abstraction, and order irrelevance (Gallistel & Gelman,
1992). In fact, these investigators saw so many parallels between the accu-
mulator and verbal counting that they called enumeration via accumulator
``preverbal counting'' (Gallistel & Gelman, 1992). Still, whereas skeletal
principles are thought to provide an outline for developing a concept of
number, experience with objects and verbal counting is needed to ¯esh this
framework out. Thus, the idea of skeletal principles is rather like a language
acquisition device for number ± nature provides the conceptual slots, but
experience is required to ®ll them (Gelman, 1993, 1998).

Clearly, an inborn counting mechanism would go a long way toward
surmounting the challenges of number learning. First, by directing atten-
tion toward discrete number, this mechanism would solve a large part of
the indeterminacy problem. As Gelman (1998) put it, ``®rst principles
[contribute] by focusing attention on inputs that are relevant for acquisition
of concepts and providing a way to store incoming data in a coherent
fashion'' (p. 562). On this view, competition from other percepts would be
diminished because domain speci®c structures give number information
privileged status and salience. Second, by providing an amodal representa-
tion of cardinal number, the accumulator would help children see disparate

13. Do we need a number sense? 295



sets as equivalent. Though various collections may differ in many respects,
these differences would be stripped away once the collections were repre-
sented as featureless magnitudes. This abstraction not only would support
the development of number categories, but could also facilitate the mapping
of number words by providing unambiguous referents. Children, who are
predisposed to isolate number from the perceptual stream, should also
be more likely to map number words to referents correctly. And as an
additional bene®t, children should have less trouble acquiring conven-
tional counting skills because the accumulator follows all the principles of
verbal counting. If the rules that govern counting are familiar, then learning
to count would boil down to implementing known rules with language-
speci®c terminology ± a far cry from deducing the rules while also learning
the words.

Core knowledge

Similar developmental bene®ts are provided in a second domain speci®c
learning account that endows infants with core knowledge for number
(Spelke, 2003; Spelke & Tsivkin, 2001; Wynn, 1992a, 1995, 1998). In
Spelke's version, the proposed core consists of two distinct systems for
representing number. One system uses a tracking mechanism that assigns a
mental token to each object in a group. These tokens function as pointers
to the objects' locations. Because there is a one-to-one relation between
tokens and objects, the set of tokens can be used to represent the exact
number of objects. However, only a few pointers can be active at any one
time due to constraints on selective attention. Furthermore, although the
representation preserves the individuality of the objects, it does not provide
a representation of the whole group (i.e., in the way that a number word
like ``three'' verbally represents a set's cardinality).

The other system (also identi®ed as the sole core knowledge structure by
Wynn, 1995, 1998) represents large sets, but only approximately. It is based
on the accumulator mechanism described above. However, proponents of
the core knowledge view do not emphasize the accumulator's parallels
to verbal counting. In fact, Wynn (1995, 1998) has argued that the lack of
functional parallels between counting and the accumulator is what makes
learning to count so dif®cult. Instead, these investigators focus on the
strengths and limitations of the accumulator ± in Spelke's case, with rela-
tion to the object tracking representation. In this regard, she notes that the
accumulator is inherently inexact, even for small sets, because there is not a
one-to-one relation between pulses and items (though there is a one-to-one
relation between gate openings and items). Also, in contrast to the exact
system, this representation does not preserve the individuality of the items,
though it does represent the group as a whole.

Thus, Spelke's core knowledge account holds that both systems have
inherent limitations ± the ®rst being limited to set sizes that the object
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tracking mechanism can handle (i.e., <4) and the other being limited to
rough estimates. Furthermore, though both systems represent an aspect of
number, they do not interact so as to provide the basis for a complete
number concept (i.e., the ability to represent a collection composed of indi-
vidual items). Only verbal counting, she (Spelke, 2003; Spelke & Tsivkin,
2001) has asserted, allows people to represent collections composed of
individuals, and do so for all set sizes exactly.

Despite their limitations, it is argued that these core knowledge systems
constitute the conceptual foundation for subsequent learning and, there-
fore, play a crucial role in numerical development. They solve many of the
same problems that preverbal counting solves in the Skeletal Principles
view. Like preverbal counting, core knowledge serves to direct attention
toward discrete number, thus making numerical interpretations of the
count words more likely. Like preverbal counting, core knowledge provides
amodal representations of cardinal number, thereby supporting the forma-
tion of numerical equivalence categories. The main difference is that in the
core knowledge view, the rules of conventional counting are not innately
available.

In summary, though these views vary in their treatment of certain points,
they share one key assumption ± that children use number-speci®c knowl-
edge systems to acquire more mature concepts and conventional skills. In
each account, the problems of number learning are reduced by endowing
children with knowledge structures that direct attention toward number,
support comparisons and abstraction, and provide an organizing frame-
work for mapping words to meaning. Though these domain speci®c systems
are incomplete in and of themselves, they are thought to reduce enough
variability to make number learning tractable.

Plan for the chapter

In this chapter, we aim to evaluate whether number learning actually is
supported and guided by domain speci®c processes ± by an innate number
sense. This is challenging because, whereas it may be possible to show that
processes exist, it is nearly impossible to prove they do not. To draw an
extreme analogy, one could propose that number concepts develop after the
number fairy sprinkles magic dust on children in their sleep. Though you
could interpret a lot of behavioral evidence in terms of this explanation, it
would be impossible to falsify. For example, if you videotaped a sample of
children every night and never saw the number fairy, a fairy-theorist could
argue that she was there, but she was too small to be seen by the naked eye.

A further complication is that domain speci®c learning and domain
general learning are not mutually exclusive. In fact, there is widespread
agreement that domain general processes are involved in all learning,
including number learning. The argument of domain speci®c theorists is
that these processes are not suf®cient on their own. Thus, simply showing
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that number learning involves domain general processing cannot rule out
domain speci®c processing.

How, then, can the question of domain speci®city be addressed? In the
present chapter we take three approaches. First, we ask whether particular
domain general mechanisms can solve particular number learning prob-
lems. This is different from simply claiming that domain general processes
are involved in number learning. At a general level, any mental activity
requires domain general components, such as attention, perception, or
memory. But when we consider domain general mechanisms that are more
detailed, they often are either distinguishable from, or redundant with, the
proposed domain speci®c mechanisms.

Second, we will look for behavioral signatures of these domain general
processes that have been documented in other concept learning. Because the
explanations we entertain are detailed, they produce idiosyncratic patterns
of learning. These patterns have been reported for learning a variety of
noun and adjective categories (e.g., color) as well as analogical reasoning
and conceptual mapping tasks. If the same signatures were observed in
number development, it would be strong evidence that the same mech-
anisms are involved.

Third, we consider whether there is any additional evidence that compels
a domain speci®c account. Even if the basic problems of number learning
can be explained with domain general processes, it is possible that some
behavioural evidence cannot. Indeed, the idea of domain speci®c number
learning arose largely in response to evidence for numerical sensitivity in
infants. We consider both the validity of this evidence and whether it
requires a domain speci®c explanation.

A domain general account of number development

Though number development involves many conceptual components, we will
focus on three achievements in particular: (1) isolating number from the
perceptual stream; (2) forming small number categories; and (3) bringing
meaning to number words. These accomplishments likely involve both verbal
and nonverbal processing. As such, they not only emerge in the age range
most likely to bene®t from either skeletal principles or core knowledge, but
also form the foundation for a range of other skills and ideas. We have
already discussed the particular challenges inherent to these developments in
the realm of number, and we have seen how prominent domain speci®c
accounts can explain children's achievement of them. Now, let us consider
whether domain general mechanisms provide a plausible alternative.

How do children isolate number from the perceptual stream?

Number applies only to collections of individuals. Thus, to have a notion of
number, one must maintain and coordinate two interpretations of reality:
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(1) there are individual objects and (2) some of these objects form a
coherent whole ± a collection. To explain the origins of these interpreta-
tions, domain speci®c theorists build them into the baby. For example,
Spelke (2003; Spelke & Tsivkin, 2001) contends that object tracking yields a
representation of individuals, and the accumulator yields a representation
of collections as wholes. Though she has argued that the coordination of
these notions requires language, she maintains that the ideas are supplied
by evolution.

Setting aside, for the moment, the claim that these knowledge systems are
innate, we should point out that neither object tracking nor the accumu-
lator is a specialized mechanism for number. Object tracking is a perceptual
mechanism for representing objects and their locations (Kahneman,
Treisman, & Gibbs, 1992; Pylyshyn, 1989). The ability to parse a scene into
discrete objects and track these through space serves many functions,
including navigation, object representation, object identi®cation/naming,
and object manipulation. Indeed, object individuation is so fundamental to
human cognition that it is hard to imagine how most other processes could
operate without it. Though the link between numerical cognition and object
representation is obvious (i.e., it would be impossible to perceive number
without individuation), that does not mean that the processes underlying
individuation were evolved to enable humans to think about number
(Scholl & Leslie, 1999). Instead, object tracking may be the quintessential
domain general process.

Similarly, the accumulator could apply to a variety of mental activities.
There is evidence from rats that it underlies the estimation of time (Meck &
Church, 1983). It could also, in principle, support estimates of intensity,
size, and spatial extent. In fact, one could argue that the accumulator is
better suited to continuous applications such as these because they do not
require the effortful and potentially error-prone step of gating energy in
segments (Mix, Huttenlocher, & Levine, 2002a). From this perspective, it
seems more likely that the accumulator was evolved for non-numerical uses
and was perhaps coopted for numerical processing, rather than the other
way around. Of course, there are other ways children could come to see
collections as coherent wholes besides representing them with an accumu-
lator. We return to this issue later. For now, we wish only to acknowledge
that this process does not constitute a domain speci®c endowment, even if it
turns out to underlie numerical development.

So, one possible answer to the question of how children isolate number
without domain speci®c processes is that they rely on processes that are
inborn, but domain general. However, this redescription still builds quite a
lot into the baby unnecessarily, given recent discoveries about very early
learning. Multiple studies have demonstrated that infants readily extract
statistically reliable patterns from a variety of perceptual data, including
auditory sequences (Saffron, Aslin, & Newport, 1996) and visual scenes
(Kirkham, Slemmer, & Johnson, 2002), after even brief exposures.
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Moreover, infants recognize these patterns in subsequent, unfamiliar
situations (Gomez & Gerken, 1999). This means that the conceptual pre-
cursors to number (i.e., individuation and colligation) could develop
rapidly over the ®rst year of life, rather than being innate.

Individuation via statistical learning

Infants are bombarded with information about the physical world starting
at least as early as birth (and perhaps earlier if we include encounters with
one's own hands and feet). The number of distinct objects infants observe
and contact in a single day at home far outstrips the number of stimuli
presented in a statistical learning experiment. There can be no doubt that
everyday experience provides enough data about objects to support the
extraction of statistically reliable patterns. And according to the literature
on object concepts, not only do such patterns exist, but infants respond to
them in a predictable sequence that suggests gradual abstraction over time.

Adults use many cues to parse the environment into separate objects,
including colour, texture, and shape. But perhaps the most reliable test is
whether all the parts move together or separately. Indeed, even adults
overlook dramatic changes in an object's surface features (e.g., one person
changing into another), as long as the object occupies the same position or
trajectory in space (Scholl, Pylyshyn, & Feldman, 2001; Simons & Levin,
1997). This use of movement and space may re¯ect an innate bias, but it
also could be learned. A newborn baby, who lacks the strength to even sit
up, nonetheless observes other animates, most notably people and house-
hold pets, in nearly constant motion. This movement provides exceptionally
reliable cues that Mom, for example, is not part of the wall, the table, or the
bed. The limitations of newborns' visual systems actually may serve to
increase their sensitivity to the patterns in movement information by
reducing the salience of competing featural cues. As in other ``less-is-more''
accounts (e.g., Newport, 1990; Regier & Gahl, 2004), early lack of visual
acuity may make infants particularly good at using movement cues because
these would make up the bulk of their input, by default.

Statistical learners are sensitive to correlations among features. So, once
infants see moving objects as unitary, they should be able to extract other
reliable patterns based on the correlated features of these units. For
example, movement may tell them that the family dog is not part of the rug
or the furniture. But this moving blob also consists of several other corre-
lated features. It always has roughly the same shape. It is covered with
brown fur. It moves a certain way. In contrast, another moving blob (e.g.,
Mom) may be tall. It may talk and smile. Good things might happen when
it picks you up. Enough exposure to these bundles of correlated features
should allow statistical learners to realize that colour, shape, texture, and
sound also indicate unity and distinctiveness. Eventually, these cues may be
enough, in and of themselves, for infants to perceive individuality. And the
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learning we have described so far is what could occur in immobile infants.
Once infants begin to move around and manipulate objects, the amount of
information they receive about individuality would increase exponentially.
In summary, given the correlated structure of individual objects and the
rapidity with which infants can learn correlated structures, it is quite
plausible that the perception of individuals is learned.

Speci®c patterns in the object individuation literature lend support to this
hypothesis. Multiple studies have described a developmental progression in
the types of cues infants use to parse their visual world (Kellman & Spelke,
1983; Needham, 1999; Slater, Morrison, Somers, Mattock, Brown, &
Taylor, 1990; Wilcox, 1999; Wilcox & Baillargeon, 1998; Xu & Carey, 1996;
Xu, Carey, & Welch, 1999). Consistent with our account, this progression
begins with the use of movement or spatio-temporal cues. In Kellman and
Spelke's (1983) seminal rod and box experiments, 4-month-olds perceived
two ends of a rod protruding from behind a screen as one continuous piece,
as long as the two ends moved together. Subsequent research has shown
that older babies also use movement cues to tell objects apart. For example,
when shown a duck and a truck emerging simultaneously from behind a
screen and then returning, 10-month-olds seem surprised to see only one
object when the screen is lowered (i.e., they look longer at one object versus
two) (Xu & Carey, 1996). Apparently, they realize that the same object
cannot appear in more than one place at the same time. However, when
only featural information is available (i.e., when the duck was displayed
alone and then hidden behind the screen while the truck was displayed), 10-
month-olds respond as if they no longer represent the objects as distinct
individuals. The fact that the duck and the truck did not look at all alike
was not enough information to tell babies that these were separate objects.
They apparently needed to see the objects occupying different locations.
Thus, movement/spatiotemporal information seems to be the fundamental
cue to individuation used by infants. Still, though use of this information
emerges early, it is not present from birth. When newborns were tested with
the rod and box procedure, they reacted to the test displays as if they
perceived two small rods, rather than one continuous piece (Slater et al.,
1990). This indicates that even movement cues may be learned during the
®rst four months of life.

Further research has mapped out the use of various featural cues in
infancy (Needham, 1999; Wilcox, 1999; Wilcox & Baillargeon, 1998; Xu &
Carey, 1996). Though differences in testing procedures have led to dis-
agreement about the particular ages involved, the existing studies all show
that infants begin to use different cues at different times, in the same basic
progression. This starts with the use of movement and form features,
including size and shape. Somewhat later, surface features are used, begin-
ning with pattern. Relatively late in development (at 11.5 months according
to Wilcox) infants begin to use color. This gradual acquisition of cues to
individuation is consistent with the idea that infants learn what features go
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together after massive experience with objects. From this perspective, there
are at least two reasons why some cues would be noticed before others. One
is, as noted above, that changes in infants' visual acuity may increase the
salience of certain information (e.g., movement, size, and shape) over infor-
mation that requires better vision to discern (e.g., pattern). Another reason
may be that some cues are more tightly coupled with objecthood than others.
For example, because many objects are multicolored, color may be a less
reliable cue to individuation than shape. If so, then infants may not expect
color information to indicate separate objects until they have amassed
enough experience to know that it can sometimes be diagnostic.

Colligation via categorization

Next, we turn to the second conceptual precursor to number: the notion of
collections as undifferentiated wholes. Recall that in both of the domain
speci®c accounts, the accumulator supplies this notion by converting per-
ceived collections into mental magnitudes for which the individuality of their
constituents is obscured. It may be true that such a representation would
accomplish this. However, it is not clear how the accumulator solves an
arguably more basic problem ± namely, that of perceiving the collections in
the ®rst place. In other words, there is a chicken±egg problem inherent to the
domain speci®c argument. To enumerate a collection using the accumulator,
the infant must ®rst see a particular subset of objects as a collection. Yet, if
they see a subset of objects as a collection worthy of enumerating, then they
must already perceive the collection as a homogeneous entity at some level.
In this light, the only contribution of the accumulator is to assign a quan-
titative value to a pre-existing percept. But how does this perception of
collections itself originate?

As we have discussed, number categories piggyback on other categories.
You cannot enumerate ®sh until you know what ®sh are and can group ®sh
separately from non-®sh. From a developmental standpoint, this means
that numerical awareness should not be possible until at least one category
can be recognized. Furthermore, subsequent number perception should
emerge gradually, in one context and then another, as other categories are
learned. Whether or not infants use an accumulator to enumerate sets, the
necessity of non-numerical categorization is a given. And because we can
assume that non-numerical categorization is taking place, there is no reason
to posit a domain speci®c process for perceiving collections as wholes.
Experience at forming and contrasting groups would be suf®cient.

For example, imagine a baby playing with a pile of stuffed animals. To
perceive various subsets of animals (i.e., collections), the infant would need
to discover ways that the animals are similar. Extensive research suggests
that adults and children discover dimensions of similarity via holistic or
high-similarity comparisons. Perhaps seeing two highly similar toys in a
restricted space, such as a container or one's own hands, would be enough to
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induce the ®rst comparison. As each dimension is isolated, it can serve as the
basis for subsequent comparisons that may, themselves, support the dis-
covery of additional, new dimensions (Gentner, 2003; Gentner & Medina,
1997; Gentner & Namy, 2004; Goldstone, 1996; Medin, Goldstone, &
Gentner, 1993; Smith, 1989). Furthermore, the contrast between matching
items and nonmatching items serves to focus attention on particular dimen-
sions (Paik & Mix, in press). That is, when two items are not only highly
similar to each other but also highly distinctive from the surrounding
objects, it is maximally likely that children will compare them. Thus, we can
conceptualize the development of categorization as a series of groupings,
contrasts, and regroupings as more and more dimensions of similarity are
discovered. Because comparisons between groupings require abstraction of
shared features, the domain general process of categorization has, inherent
to it, the notion of collections as undifferentiated wholes.

It is an open question whether infants engage in this type of categor-
ization. It has been argued that even very young infants perceive object
categories. But this claim is based on evidence that infants respond to
category boundaries in habituation experiments (e.g., Madole & Oakes,
1999; Quinn & Eimas, 1996). For example, Quinn and Eimas showed infants
a series of cat heads until looking time decreased. When shown a dog head at
test, infants looked signi®cantly longer (i.e., they dishabituated). A strong
interpretation of such data is that infants formed a category of cat during
habituation, compared the dog head to their remembered category at test,
and rejected the dog as a member of the cat category. But this interpretation
assumes that habituation±dishabituation re¯ects an explicit comparison
process when it could instead re¯ect an implicit attentional process (see
Cohen & Marks, 2002; Schoner & Thelen, 2001).

Furthermore, these experiments provide no evidence that infants impose
such categories on their perception of complex, real world scenes. In other
words, do infants look into their family living room and mentally parse the
scene into cats and non-cats? There is no way to tell from existing habitu-
ation experiments, because the categories in these tasks are provided by the
experimenter. Competing stimuli are stripped away so that infants need
only react to the regularities presented before them. And as we have seen,
there is good reason to believe that infants are well equipped to respond to
perceptual regularities. This does not necessarily mean that they ``have''
these categories yet, or that they see the world differently because of them.
Similarly, in infant number experiments, the groupings to be enumerated
are bounded by the experimenter. There is usually nothing to look at except
the computer screen that contains a collection of two or three pictures. In
this way, it is the experimenter that completes the categorization step.

Though it is unclear whether categorization qua grouping is present in
infancy, there are stronger indications that it has emerged by toddlerhood.
Children touch objects in sequences that are consistent with explicit object
grouping starting at 12 months of age (Bauer & Mandler, 1989; Sugarman,
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1981). Children begin grouping similar objects around 2 years of age. Thus,
we conclude that the ability to group items, and thereby view collections as
wholes, does not develop simultaneously with individuation, as claimed in
the domain speci®c accounts. Instead, colligation appears to develop some-
what later. This makes sense from a learning perspective because, to form
groups, one must see individuals as similar. And to see individuals as similar,
one must see individuals. The other developmental implication here is that
even if infants are endowed with numerical representations, without some-
thing to enumerate (i.e., an explicit grouping perceived by the infant), there
would be no reason to use them. Thus, an important challenge to the domain
speci®c position on number learning is to show what categories, if any,
infants naturally recognize and enumerate in their everyday experience.

In summary, number arises from the coordination of two ideas: (1)
objects can be seen as individuals and (2) collections can be seen as wholes.
Domain speci®c accounts assume that these notions are embodied in innate
processes for representing number. However, we have argued that the same
ideas can and do develop from domain general processes of object repre-
sentation and categorization. There is suf®cient correlational structure in
objects, and suf®cient sensitivity to correlational structures in infants, for
these notions to emerge through experience. There is good evidence for
Spelke's claim that number language plays a critical role in coordinating
these notions and transforming them into an explicit sense of number (Mix
et al., 2005). But at the earliest stages, these ideas may not be numerical at
all ± regardless of how much they may seem so to those who already
understand how individuals, collections, and number are related.

How do children form small number categories?

Like most concepts, the core of number concepts consists of equivalence
classes. The idea of dog is largely de®ned by the subset of entities in the
world we call ``dogs.'' Similarly, the idea of three is largely de®ned by the
subset of collections in the world we call ``three'' (e.g., Russell, 1919). Put
another way, to know what three is means to recognize threeness in a
variety of situations ± to see that many otherwise disparate collections can
be the same in terms of number. But what draws children's attention to
number when there are so many competing properties, most of which can
be analyzed at the object level, rather than the group level?

Domain speci®c accounts solve this problem by building in specialized
processes that support number categorization in two important ways. First,
they direct attention toward number. That is, domain speci®c processes not
only enable our brains to think about numbers, but also cause them to
actively seek out numerical information, much like the language acquisition
device tunes children in to human language. Second, these processes
provide amodal media that should facilitate numerical comparisons. Chil-
dren who see three cookies on a plate and three dogs in the backyard may
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not perceive these collections as equivalent. But if they represent them using
identical mental tokens (whether three pointers or three gatings into an
accumulator), then the likelihood of noticing this similarity should be
increased. Indeed, an explicit claim of these domain speci®c accounts is that
infants use both object tracking and accumulator representations to com-
pare collections and judge similarity. If so, then the apparent obstacles to
number categorization would be overcome largely by genetic endowment.

However, the challenges of number categorization, though unique in
some ways, are not all that different from categorization in general. Because
we know children form many other categories without the aid of domain
speci®c processes, we can assume that effective domain general alternatives
exist that might be recruited for use in number categorization. These
include (1) abstracting dimensions of similarity by making comparisons and
(2) highlighting similarity by giving shared dimensions the same name. As
the following review will show, these processes not only are suf®cient to
explain the development of number categories in principle, but are re¯ected
in the particular patterns that have been observed in studies of numerical
and non-numerical categorization alike.

Categorization via comparisons

As discussed earlier, many studies demonstrate that people isolate new
dimensions of similarity by aligning items for some other reason (Gentner &
Markman, 1994; Goldstone, 1996; Kotovsky & Gentner, 1997; Markman,
1997; Smith, 1989, 1993). For example, children may not realize that dogs
have tails, but if they start to examine and compare two dogs for some other
reason (e.g., the way the dogs moved or sounded), they might discover that
both dogs have tails, whereas people do not. Similarly, children might
discover that objects in two collections can be aligned (thereby discovering
numerical equivalence) because they noticed how the objects in one set can
be matched one-to-one with the objects in another (e.g., cups onto saucers).

There is abundant evidence of the gradual identi®cation and accrual of
different points of alignment in non-numerical categorization. One indi-
cation is that early comparisons depend on a high degree of similarity along
many dimensions ± not just those relevant to a particular task (Brown &
Kane, 1986; DeLoache, 1989; Gentner & Rattermann, 1991; Gentner &
Toupin, 1986; Holyoak, Junn, & Billman, 1984; Smith, 1993). For example,
DeLoache (1989) tested children's understanding of models by hiding a toy
in either a full-size room or a model room and then having children search
in the analogous space (e.g., if the toy were hidden in the room, they would
search in the model, and vice versa). Children performed much better in this
task when the surface similarity between the room and its model was high ±
that is, when the furniture had the same fabric, when the tables were the
same shape and colour, and so forth ± even though these features were
irrelevant to the search task.
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Smith (1989) reported similar effects in an object-grouping task. Using a
follow-the-leader procedure, she asked children to group objects that were
the same colour. For example, if she chose a red triangle and a red circle
from a pile of several objects, the child was supposed to infer the com-
monality and produce another pair of objects in the same category (e.g., red
things). Because the youngest children Smith tested could only pair items
that had a high degree of similarity overall (e.g., two red circles), she
concluded that children do not isolate separate dimensions of similarity at
®rst. Instead, they initially group items with a high degree of overlap.

Additional studies also have demonstrated that exposure to high-
similarity comparisons can induce children to discover new dimensions of
similarity (Gentner & Markman, 1994; Gentner & Namy, 2004; Kotovsky
& Gentner, 1997; Marzolf & DeLoache, 1994; Medin, Goldstone, &
Gentner, 1993; Spalding & Ross, 1995; Waxman & Klibanoff, 2000). For
example, Kotovsky and Gentner (1997) found that 4-year-olds had great
dif®culty in recognizing the relation between circles that increased in size
and squares that increased in darkness. However, when children were
trained on same-dimension comparisons (e.g., all sets that increased in size),
their performance on cross-dimension comparisons increased signi®cantly.

Along similar lines, Sandhofer (2003) found that 24-month-olds isolated
the dimension of texture more readily when they were encouraged to
compare and contrast objects. Children were trained to recognize different
textures in one of two conditions. In non-comparison training, they were
given three objects, one at a time, and asked, ``Is this scratchy?'' In com-
parison training, they were given the same three objects simultaneously and
instructed to point to the scratchy one. Although children in both condi-
tions learned the texture words, only children who had received comparison
training could match same-textured objects in a subsequent generalization
task. Thus, comparing objects seemed to support the discovery and
abstraction of new dimensions of similarity.

If these processes underlie learning about number, then children's
numerical equivalence judgments also should progress from high- to low-
similarity matches. This should be evident in the natural progression of
children's learning, as well as the effects of high-similarity training. With
regard to the ®rst point, a progression from high- to low-similarity matches is
precisely what Mix and others have found in the development of numerical
equivalence judgments (Huttenlocher, Jordan, & Levine, 1994; Mix, 1999a,
1999b, 2002, 2004; Mix et al., 1996; Siegel, 1971, 1974). Starting at age 3
years, children can match nearly identical sets, such as two black dots and
two black disks.1 However, children fail to match numerically equivalent sets

1 Though the equivalent sets in this condition were matched along several non-numerical

dimensions, such as color and shape, the same was true of the distracter sets, also black dots.

Thus, to be correct in the high-similarity comparison, children had to take quantity into

account.
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where the objects are not identical, such as two black dots and two lion
®gurines, until 3±3.5 years of age (Mix, 1999a, 1999b, 2002; Mix et al., 1996;
Sandhofer & Mix, 2003a). By 4 to 4.5 years, children can match hetero-
geneous sets where there are no items in common (Mix, 1999b; Siegel, 1974).
Four-year-olds also recognize quite disparate numerical matches between
sets of sounds and items in a visual display (Mix et al., 1996). However,
number categories are not fully inclusive at 4 years of age. It takes an
additional year for children to recognize numerical equivalence for dissimilar
sets when one of the distracters is an identical object match (e.g., two ¯owers
equals two trucks but not three ¯owers) (Mix, 2002). This condition is
analogous to the cross-mapping condition that has been used in other pre-
school comparison research (Rattermann, Gentner, & DeLoache, 1990) and
represents the complete decoupling of numerical similarity from surface or
object level similarity.

These studies indicate that children do not notice numerical similarity
immediately for a range of comparisons, as one might expect given an
amodal representation for number. Instead, they seem to build number
categories gradually, beginning with comparisons that share a high degree
of non-numerical similarity, and moving over a period of years toward
number in complete isolation. The length of time involved in this pro-
gression, and the particular way it unfolds, is consistent with the progres-
sions described for non-numerical category development. This is strong
evidence that the same domain general processes are at work.

Additional evidence for these processes comes from a training study with
30-month-olds (Sandhofer & Mix, 2003b). As in Sandhofer's (2003) texture
training study, children were taught to identify small set sizes in one of two
conditions. Children in the noncomparison condition were shown cards one
at a time, and asked, for example, ``Is this three or four?'' Children in the
comparison condition were shown three cards all at once and asked,
``Which card has three?'' Thus, children in the comparison condition com-
pared sets of objects, whereas children in the non-comparison condition
compared verbal labels. As for texture, children in both conditions learned
the number words and could accurately identify named sets. However, only
children who completed comparison training matched disparate sets in
terms of numerical equivalence. This study indicates that, as with other
properties like texture, children isolate and abstract the property of number
by comparing collections.

But if comparison is the mechanism by which number categories are
built, a key question is what makes number salient. With a range of com-
peting cues, why would children ever notice an obscure property like
number? As we will see, verbal labeling of numerical set sizes may play a
major role. However, there are other potential sources of information for
young children. Toddlers engage in a variety of play activities that involve
implicit comparisons between sets in terms of one±one correspondence
(Mix, 2002; Anderson & Mix, 2004). For example, toddlers often distribute
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objects to people. This activity does not require a priori knowledge of
numerical equivalence ± the right number of objects can be achieved by
making local matches (i.e., empty hand gets a toy, full hand does not). Yet
the results of these efforts open a window to the idea of numerical
equivalence. Toddlers also encounter a variety of objects whose functional
relations with other objects encourage one-to-one mappings, such as cups
and saucers, plastic eggs and egg cartons, and so forth (Mix, 2002). For
example, many children play with shape puzzles, in which each piece has
its own uniquely shaped hole in a wooden board. Putting the pieces in
their holes is an exercise in one-to-one correspondence. Furthermore, it is
selfcorrecting. The objects themselves tell you if they ®t, if you have
enough, or if you need more. In many instances, the holes have identical
pictures of the pieces, or thematic cues that link them (e.g., a horse in the
hole for the barn piece), thereby encouraging correct mappings via local
pairs that have multiple points of alignable similarity. After generating
enough one-to-one correspondences in situations that provide massive
contextual support, children may become able to compare objects one-to-
one in situations that do not (i.e., garden variety comparisons between
groupings). This could be enough to support the isolation of number as a
property.

Categorization via shared labels

A second domain general mechanism that promotes categorization is the
use of language to name common features and relations. Like the amodal
representations credited to infants in the domain speci®c accounts, language
performs two important functions in this regard. First, shared labels signal
that there is a commonality (Gentner & Rattermann, 1991; Rattermann &
Gentner, 1998; Sandhofer & Smith, 1999; Waxman & Markow, 1998). Like
shared surface features, a shared label can initiate comparisons that are
themselves a means of discovering new dimensions. This process is re¯ected
in the ®nding that objects with the same label are rated as more similar than
objects with different labels (Sloutsky, Lo, & Fisher, 2001). Learning a label
also facilitates the recognition of shared properties and matching (Imai,
Gentner, & Uchida, 1994; Markman, 1989; Rattermann & Gentner, 1998;
Sandhofer & Smith, 1999; Smith, 1993; Waxman & Hall, 1993; Waxman &
Markow, 1998). For example, 21-month-olds in a triad task made more
taxonomic matches (cookie±cookie) than thematic matches (cookie±Cookie
Monster) if the items had been given the same nonsense label (Waxman &
Hall, 1993). Labeling also has dramatic effects on preschoolers' perform-
ance in cross-mapping comparisons (i.e., where relational similarity is pitted
against surface similarity). For example, 3-year-olds initially failed a sticker
search task in which they had to identify an item's relational match (same
relative size) but ignore its identity match. However, when the experimenter
labelled the items ``Daddy, Mommy, Baby,'' 3-year-olds performed well
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above chance, reaching the same levels of accuracy as children two years
older (Rattermann & Gentner, 1998).

Though labels eventually do facilitate categorization, a distinctive feature
of this process is a marked lag between correct labeling and correct
grouping. That is, children can correctly label items along a particular
dimension without seeing the items as similar. For example, Smith (1993)
found that children can say that this truck is red and that ball is red, but
still may not recognize that the two items belong in the same class of red
things. Further tests involving a connectionist model con®rmed that these
two senses of ``same'' are quite distinct. Smith, Gasser, and Sandhofer
(1997) trained a network to label three properties of a given input. For
example, given a smooth red triangle and asked ``What color is it?'' the
network learned to respond ``red,'' and when asked ``What shape is it?'' the
network learned to respond ``triangle.'' However, even after learning to
label objects by color the network failed to represent objects that were the
same on a given property as equivalent. That is, when the network was
asked, ``What color is it?'' and was presented with a smooth red triangle,
the pattern of activation on the hidden layer was different than when the
network was presented with a bumpy red square and asked, ``What color is
it?'' The network apparently failed to isolate the property of color right
away and continued to represent aspects of the shape and texture of the
objects for some time even though these were irrelevant to the task at hand.

A second function of shared labels is to direct attention. Simply labeling
objects in a scene improves memory for having seen the object (Gentner,
2003). This suggests that labelling increases attention toward one object in
particular, and this increased processing is re¯ected in better memory.
Shared labels also can direct attention toward a particular dimension, even
if the precise meaning of the label is unknown. For example, hearing the
word, ``red,'' orients children toward the dimension of color even though
they may not know exactly what ``red'' means (Landau & Gleitman, 1985;
Backscheider & Shatz, 1993; Sandhofer & Smith, 1999). This is re¯ected in
the fact that when 2-year-olds are asked, ``What color is it?'' they tend to
provide a color word even though their responses are usually incorrect.

In summary, naming promotes categorization by signaling a commonality
between two entities and by drawing attention toward a particular dimen-
sion. The way these processes typically unfold produces three distinct pat-
terns: (1) labeling increases matching; (2) labels are learned prior to abstract
categorization; and (3) labels direct attention toward an overall dimension
before speci®c word meanings are learned. Let us consider next whether these
same patterns are evident in the development of number categories.

Labeling increases number matching

Across several experiments, children recognized more numerical matches if
they knew the labels for at least a few small set sizes (e.g., could count
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to two and produce sets of one and two on demand) (Mix, 1999a,
1999b; Mix et al., 1996). In fact, children who failed to demonstrate at least
this level of counting ability could not recognize numerical equivalence
except for sets whose elements were nearly identical. This suggests, albeit
indirectly, that knowing the labels for small collections facilitates numerical
comparisons.

Crosscultural research also indicates that number words facilitate numeri-
cal comparisons. Gordon (2004) studied numerical equivalence judgments in
the PirahaÄ, an isolated group of hunter-gatherers in the Brazilian Amazon.
The PirahaÄ have little contact with mainstream Brazilians and are essentially
monolingual. Remarkably, the PirahaÄ lack a true counting system. Accord-
ing to Gordon, the PirahaÄ number words correspond to ``one,'' ``two,'' and
``many'' only. Moreover, these words are inexact. For example, the word for
``one'' frequently refers to quantities of two, three, or more objects. When
members of the PirahaÄ tribe were asked to remember the numerosity of
various sets, their performance was clearly impaired, particularly for
numerosities of three or more. For example, after inspecting a set of nuts for
several seconds, they watched as the nuts were placed in a can and then
withdrawn one at a time. After each nut was withdrawn, participants were
asked whether nuts remained in the can. Even for sets as small as two nuts,
the PirahaÄ people were only 70% correct. For sets of four, performance
dropped to 40% correct. When asked to discriminate between very small
quantities, such as three versus four, PirahaÄ performance was at chance.
These ®ndings suggest that learning words for exact quantities provides
critical support for numerical reasoning.

Number labels emerge before abstract categorization

Though number naming can promote categorization, knowing number
words does not result in immediate abstraction. Recall that children fail to
recognize numerical equivalence between very disparate sets, even though
they can accurately label small sets (e.g., Mix, 1999a, 1999b). Thus, as for
other properties, children may label number in isolated instances before they
know that these disparate situations are related. Sandhofer and Mix's
(2003b) number training study provides additional evidence. Although 30-
month-olds successfully learned the meanings of small number words via no-
comparison training (inasmuch as they could identify displays of each set
size when requested), they were unable to match numerically equivalent sets.
The same pattern has been reported in naturalistic observations (Mix et al.,
2005). In brief, toddlers accurately label small sets in restricted contexts for
many months before they can match the same set sizes in experimental tasks.
(See Mix et al., 2005, for details.) This protracted time course does not seem
consistent with the domain speci®c claim that children map number words to
pre-existing, amodal representations. Instead, it suggests a more gradual
learning process in which children ®rst map number words to speci®c
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contexts, eventually juxtapose these contexts, make the necessary com-
parisons, and ®nally abstract numerical equivalence.

Number labels direct attention to the dimension of number

Finally, there is evidence that number labels direct attention toward the
dimension of number before speci®c meanings are acquired. Wynn (1992a)
showed preschoolers pairs of cards with different numbers of pictures (e.g.,
one ®sh versus four ®sh), and asked them to point to the card with a certain
number of items (e.g., ``Can you show me the card with four ®sh?''). By 2.5
years of age, children correctly inferred that count words greater than one
referred to sets of multiples. This was evident because they pointed to the
correct card as long as it was paired with a singleton. However, these
children performed randomly when both cards depicted multiples.

Sandhofer and Mix (2003a) also found evidence of this pattern when they
tracked children's acquisition of number language and concepts from 36 to
54 months of age. On average, children began to identify small sets
correctly at 42 months of age. That is, they accurately produced sets of one,
two, or three when asked. However, this accomplishment was preceded by
an awareness that the number words refer to numerosity at age 37 months.
In particular, children who were asked, ``how many?'' usually responded
with a number word, even though the speci®c word did not always match
the speci®c quantity. Note that both of these developments preceded the
ability to match disparate sets on the basis of numerical equivalence
(observed, on average, at 48 months).

How do children bring meaning to small number words?

Domain speci®c theorists assume, following Fodor (1983), that one can
only learn words for concepts that one can already represent (Spelke &
Tsivkin, 2001). From this perspective, it is natural to posit that innate
representations of number provide conceptual referents for the number
words. Without such representations, how else could number words be
learned? And as it happens, the proposed representations make remarkably
good referents. They are abstract and amodal. The category boundaries are
clear, at least for small numerosities. Therefore, in these accounts, the main
challenge to learning small number words is determining which words refer
to which numerosities.

Once these mappings have been sorted out, children can achieve new
levels of understanding. For example, Spelke (2003; Spelke & Tsivkin,
2001) has argued that mapping small number words to both the object
tracking and accumulator representations for those set sizes allows children
to combine the ideas of individual and collection, thereby achieving true
concepts of number. In other conceptualizations, the litmus test for innate
concepts is whether they appear prior to language mastery (e.g., Carey,
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2001). The argument is that if children exhibit some understanding prior to
mastering the words for it, then it must be innate. If they do not exhibit the
understanding until after they have mastered the language for it, then it
must be a cultural construction. Thus, like passing through a doorway,
children move from one level of understanding to another, by way of small
number word acquisition.

Though we agree that exposure to number language likely precipitates
new conceptual growth, we have argued that number words do not map
neatly onto pre-existing representations (Mix et al., 2005). Instead, the
process is much more iterative, continuous, and interwoven than these
accounts suggest. In particular, we have argued that partial understanding
of number language, and even the attention-directing role of unfamiliar
labels, contributes to the construction of number concepts even though
neither the concepts nor the words have been mastered. Because the details
of this proposal are presented elsewhere (see Mix et al., 2005) we will not
reiterate them here. However, we will review four key points that are
particularly relevant to the question of domain speci®city: (1) Number
words are part of early input; (2) Initial mappings are context-speci®c; (3)
Number language is acquired like other language; and (4) Number word
learning varies across children.

Number words are part of early input

Domain speci®c accounts imply that number words do not in¯uence quan-
titative thought until children master them, around age 4 years. Prior to this
milestone, children are thought to rely on their innate representations (i.e.,
object tracking and accumulator) to perform numerical tasks. Furthermore,
these representations are thought to change very little, if at all, during the
preverbal period. However, it is important to acknowledge that number
words are part of children's input from very early in life (e.g., Durkin,
Shire, Riem, Crowther, & Rutter, 1986). This means that there is a large
window of time between children's ®rst exposures to the number words and
their eventual mastery of them. Within this window, it is possible that
conceptual change is precipitated and shaped by exposure to partial
understanding of these words.

Let's consider how this might work. Words are potent organizers of
attention even when children are unsure of their meanings (e.g., Gentner,
2003). So when Mom points to two cups and says, ``two,'' children will at
least look at the cups even if they don't know what Mom is talking about.
Seeing two cups that are distinct from other objects in the scene may be
enough to impart the idea of ``same,'' or the category of ``cup'' (Paik &
Mix, in press). Indeed, there is evidence that children's early uses of ``two''
re¯ect a confusion between numerosity and similarity (Mix, 2004; Mix et
al., 2005). That is, they use ``two'' to mean ``same,'' but overwhelmingly do
so for pairs, perhaps because pairs are easier to compare. This means that,
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although children may not understand ``two'' at ®rst, exposure to this word
is likely directing their attention toward situations that pave the way for
that understanding to develop (i.e., pairs of easily compared, high-
similarity objects).

Diary and longitudinal research provides further evidence of this itera-
tive, bootstrapping process. Correct usage of small number words develops
in a stepwise progression that extends over a rather protracted time period
(Mix et al., 2005; Wagner & Walters, 1982). Children ®rst use ``two''
correctly in informal situations. Soon after, they begin to use ``one''
correctly. After several months, they begin to use ``three'' and ``four'' but
are frequently incorrect. After approximately one year of correct labeling
with the word ``two,'' they start to label correctly using the word ``three,''
but only in informal activities. Throughout this period, children provide no
evidence that they comprehend any of the count words on experimental
tasks. It is not until children consistently use ``one,'' ``two'' and ``three''
with perfect discrimination in everyday situations that they begin to
demonstrate correct comprehension and production of these terms in
experimental tasks. Soon after, they begin labeling sets of four correctly in
informal usage. At this point, nearly two years after children's initial uses of
the word ``two,'' they discover the connection between counting and
cardinality (Wynn, 1990, 1992a). That is, they realize that the count ``1±2±
3±4'' means the collection has four items in it.

Over the same time period, children's ``nonverbal'' number concepts also
undergo signi®cant, seemingly continuous change (Mix, Huttenlocher, &
Levine, 2002b; Schaeffer, Eggleston, & Scott, 1974). As we have discussed,
they accrue experience with a variety of one-to-one mappings, starting with
sets that can be mapped easily via local pairings, including socially
reinforced activities (distributing objects or turn-taking) and objects that
invite one-to-one pairing (peg±hole, peg±hole, etc.). These activities
gradually give way to set-to-set comparisons where local pairings are less
obvious (car±tree, car±tree, etc.). Around the same time (3 years of age)
children begin to match high-similarity, equivalent sets explicitly in experi-
mental tasks (Mix, 1999a, 1999b; Mix et al., 1996). From there, it takes
almost two years before they can match equivalent sets that are cross-
mapped with object similarity (Mix, 2002). Along the way, they gradually
recognize equivalence in increasingly abstract comparisons, including those
between non-identical object sets, heterogeneous object sets, and sets of
events and objects.

This pattern of acquisition suggests that, rather than mapping number
words to pre-existing concepts, language and concepts both develop ± if not
hand in hand, then at least concurrently. In both cases, development is
piecemeal. Learning number words involves the gradual accrual of partial
understandings. So does learning number categories. This means that at
any given point in time, children have an array of partial understandings at
their disposal, both verbal and nonverbal, that can be assembled in
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different combinations depending on the task. This suggests that words and
concepts interact all the way down the line, not only at the point when
children seem to understand what the words mean.

Initial mappings are context-specific

Domain speci®c accounts describe the mapping of number words to con-
cepts as if it takes place at an abstract level, divorced from any particular
context. This makes sense because the innate representations of number
supposedly provide a context-free, amodal redescription of different set
sizes. Words, like these representations, also are arbitrary symbols not
tied to any particular context. If these are the components that children
are mapping, then it is reasonable to think that they would do so at an
abstract level.

However, children's early uses of count words do not re¯ect abstract
mappings. Instead, they are decidedly context-speci®c. Mix (2004) found
that when her son, Spencer, began saying number words, he mapped them
to referents in a series of distinct, context-speci®c situations. In his earliest
mappings, he did not reference sets of objects at all. Instead, he used
number words to label written numerals. This began with the numerals that
appeared in several of his board books, but he eventually came to recognize
numerals on signs, license plates and addresses as well. At 23 months, he
began using number words to label sets of objects. His ®rst mappings were
restricted to the number ``two'' and they always occurred within a par-
ticular linguistic frame: ``Two . One. Two.'' For about a week, he
labelled only sets of shoes using this frame (i.e., ``Two shoes. One. Two.'').
Then he extended to other object sets, including two dogs, two spoons, and
two straws, using the same frame. At 24 months, he began using the variant
`` . . Two .'' For example, for two trains, he would say,
``Train. Train. Two trains.'' This frame appeared frequently for the next 6
weeks and, during this period, he did not label sets numerically without
using it.

Throughout this period, Spencer failed all tests of conventional counting.
In the Give-a-Number Test, he failed to produce two objects on request and
when asked how many objects were in a set of two, he responded with an
idiosyncratic string of number words. Thus, although he correctly labeled
different sets of two, his use of the number word ``two'' was far from
decontextualised. In fact, it was deeply contextualized in two ways. First, it
was initially restricted to speci®c situations ± ®rst labeling numerals, then
labeling shoes. Second, these early attempts were embedded in speci®c
linguistic frames. A similar pattern was reported in a diary study that
tracked the development of another young boy (Blake) from 18 to 49
months of age (Mix et al., 2005). Blake's ®rst number word also was ``two'',
initially used only when asked his age (this response had been reinforced in
preparation for his birthday). Although this was likely a simple association
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without cardinal meaning, it is noteworthy that his ®rst use of a number
word occurred only in this situation.

Number language is acquired like other language

If the acquisition of number language is guided by skeletal principles, or
supported by core knowledge, then it should develop differently from
acquisition of other language. Indeed, the key claim of domain speci®c
accounts in development is that learning in certain domains is not like other
learning. However, diary and longitudinal studies indicate that children
learn number words exactly the same way as they learn other words ± most
notably, the names of other properties. We have touched on several of these
parallels already. Children realize that number words refer to numerosity
before they know the speci®c cardinal meanings of these words (Sandhofer
& Mix, 2003a; Wynn, 1992a), just as they realize that color words refer to
the dimension of color before they know the meanings of individual colour
words (Backscheider & Shatz, 1993; Landau & Gleitman, 1985; Sandhofer
& Smith, 1999). Furthermore, as in learning color terms, local mappings of
number word to referent often precede the formation of numerical equi-
valence classes. Both Blake and Spencer spontaneously labeled various
object sets, containing the same number of items, for many months before
they could match equivalent sets in a forced-choice task (Mix et al., 2005).

There are interesting parallels between the order of the mappings children
perform for number and those observed for word learning more generally.
As we have seen, equivalence classes are affected by the degree of similarity
between objects. When the target and choice objects are highly similar, for
example a red aeroplane and a similar red aeroplane, even children who do
not comprehend color terms can match these objects by color (Soja, 1994).
But when the target and choice objects are less similar or when there is
competing similarity from a distracter object, children fail to match objects
by color until long after they have learned to comprehend and produce
color terms correctly (Rice, 1980; Sandhofer & Smith, 1999; Smith, 1984).
This is precisely the same pattern we described previously for numerical
equivalence judgments, number words, and object similarity (Mix, 1999a,
1999b, 2004; Mix et al., 1996).

A second ordering of interest involves ®rst uses of the number words.
Both Spencer and Blake mapped number words onto written numerals
early in development. In fact, these constituted their ®rst number-word
mappings. This makes sense given that children tend to interpret new words
in terms of shape as their vocabularies increase (Smith et al., 2002). Indeed,
children with a strong shape bias can identify more letters of the alphabet
than children who lack the shape bias, presumably because learning letter
names requires careful attention to shape (Long®eld, 2004). When children
map number words to written numerals, they may be extending the shape
bias to numbers. This is particularly likely given that numerically equivalent

13. Do we need a number sense? 315



sets do not have a consistent shape. Thus, written numerals would provide
a more straightforward mapping.

Finally, Spencer's use of number frames is reminiscent of children's use
of pivot grammar more generally. Bloom (1993) noted that children often
use the same simple sentence structures to incorporate new vocabulary. For
example, they might learn the frame ``Give '' to request items and then
use this frame repeatedly as they acquire new words (e.g., ``Give milk'',
``Give toy'', ``Give cookie'', etc.). Spencer's number frames have much the
same quality. They provided a way for him to incorporate new sets into his
category of ``twoness.''

Thus, we see many parallels between number development and develop-
ment in other domains. The signi®cance of these parallels is that they
indicate common underlying processes. When children associate number
words with the dimension of number, they are likely responding to patterns
in linguistic input as they do when learning other words (Bloom & Wynn,
1997). When children map number words to shape, they are using the same
strategy that works in other word learning situations (e.g., Landau, Smith,
& Jones, 1988; Smith, Jones, & Landau, 1992). When they overgeneralize,
they are struggling to reconcile their understanding of the underlying
categories with the socially accepted categories to which words refer (e.g.,
Mervis, 1985). These parallels provide important insights into the mech-
anisms by which children integrate number language with conceptual
understanding ± mechanisms that are suf®cient to explain this accomplish-
ment without invoking domain speci®c processing.

Number word learning varies across children

We have argued that number word acquisition progresses in a consistent
pattern, much like acquisition of other properties. We have explained this
consistency in terms of shared domain general processing. However,
another way to look at this consistency is that it re¯ects the universality of
domain speci®c processes. The argument is that without universal, domain
speci®c processes built-in, the diversity, inadequacy, and pluripotentiality of
children's experience with number would yield a wide range of develop-
mental outcomes. Of course, universality is a relative thing. Domain speci®c
theorists assume that interactions between innate structures and the
environment are necessary, and therefore expect a certain amount of vari-
ability across children (Gelman, 1998). However, evidence for uniformity
across children is generally taken as evidence for the constraints and focus
provided by domain speci®c learning.

To sort these issues out, it is helpful to consider in what particular ways
children differ and in what particular ways they do not. For example, we
have found that although most children will reach the same endpoint in
number word learning (i.e., forming number categories for small set sizes
and mapping the number words to these categories), individual children
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take different pathways to get there (Sandhofer & Mix, 2003a). In a longi-
tudinal study of children's numerical equivalence judgments and number
word acquisition, we identi®ed two distinct patterns of acquisition. These
patterns arose from children's performance on two tasks: (1) a number
categorization task in which children were asked to, for example, ``Give me
three,'' and (2) an equivalence matching task in which they matched a
standard to its numerical equivalent.

One group of children learned counting skills early. These children
produced the correct number of objects in the give-a-number task from early
on. In fact, these children demonstrated this understanding of the small
number words an average of 2 months before they could match any numeri-
cally equivalent sets. When these children ®nally began to match sets by
number, they did so for all of the small set sizes nearly simultaneously. This
pattern of acquisition suggests that children were mapping the number words
to different instantiations without seeing these instantiations as related.

The other group of children appeared to master each number, one at a
time, succeeding on the number categorization and equivalence task for the
quantities of two before mastering the tasks for quantities of three. This
pattern of acquisition suggests that children were fully working out the
meaning of each number word, including its corresponding equivalence
task, before moving on to the next. Unlike the language-®rst group, these
children seemed to have some sense of numerical equivalence, but one that
may have been contextually encapsulated until they learned the associated
number words.

What might account for these differences in development? Earlier in this
chapter, we outlined a variety of domain general processes that might
promote numerical development. These included use of labels to cue
similarity, formation of number categories via one-to-one mappings and
implicit categorization, and local mappings of words to speci®c situations. It
seems that every child would not need every mechanism to solve the prob-
lems of early number development. Hence the individual differences we have
described here could indicate that different children recruit different pro-
cesses depending on their learning histories. For example, children who are
surrounded by playthings that invite one-to-one correspondence may be
more likely to form equivalence categories ®rst. Children whose parents
label sets for them often may be more likely to lead with categorization
based on shared labels. A fruitful direction for future research may be to
explain why some children recruit different learning mechanisms than
others, based on variations in parent input, children's play environments,
and preferred learning styles (e.g., object manipulation versus conversation).

What about the babies?

Thus far, we have argued that domain speci®c mechanisms are not needed
to explain how children learn the meanings of small numbers. We have
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described domain general processes that could support attention toward
discrete number as well as the formation of numerical equivalence categ-
ories. We have shown that these processes not only provide plausible
alternatives to domain speci®c processing, but seem to be re¯ected in the
details of early numerical development. Based on parsimony alone, the
evidence strongly favours a domain general account. However, we cannot
be sure that nature is parsimonious. If there were additional evidence that
could be explained only with recourse to domain speci®c mechanisms, then
we would have to concede their existence. And if these processes exist, then
it is reasonable to assume that they solve all the problems that domain
speci®c theorists claim that they solve.

One class of evidence emerged in the 1980s and seemed to require a domain
speci®c explanation of number development ± namely, evidence of numerical
sensitivity in infants. In short, a series of studies revealed numerical pro-
cessing that was so sophisticated, in babies who were so young, that it seemed
impossible to explain its existence without assuming that humans are born
with a number sense (e.g., Antell & Keating, 1983; Starkey, Spelke, &
Gelman, 1990; Wynn, 1992b). From there, speci®c representations of number
were proposed (i.e., object tracking, preverbal counting, etc.) that were con-
sistent with the particular patterns of strengths and weaknesses in infants'
numerical performance. This was the genesis of current domain speci®c
accounts.

Findings of numerical sensitivity in infants may be consistent with the
domain speci®c accounts. However, we do not believe that they require them.
First, the evidence of numerical processing in infants is not as solid as initially
believed. In a recent review, Mix, Huttenlocher and Levine (2002a) concluded
that none of the existing studies had succeeded in demonstrating sensitivity to
number per se. Instead, all the procedures used with infants allowed at least
one non-numerical cue to covary with number. For example, the most
replicable evidence of numerical sensitivity in infants comes from looking
time experiments in which even newborns have responded to changes in set
size (Antell & Keating, 1983; Starkey & Cooper, 1980; Starkey, et al., 1990;
Wynn, 1998; Xu & Spelke, 2000). In these experiments, infants are shown a
series of displays with the same number of pictures (e.g., two dots). Over time,
infants lose interest in these displays and stop looking at them as long. Once
looking time has decreased by about half, infants are shown displays with a
new set size (e.g., three dots). In general, infants' looking time has increased
signi®cantly in response to this change, suggesting that they remembered the
®rst set size and noticed that the second set size was different. The problem is
that when number changes in these displays, so do a variety of other cues,
including contour length, density, complexity, surface area, brightness, and
spatial frequency. This means that infants could be responding to a change in
one or all of these non-numerical cues, rather than number.

Direct support for this interpretation came from a study in which number
was pitted against contour length at test (Clear®eld & Mix, 1999). Infants
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were habituated to one set size of black squares. At test, they saw either the
same number of squares with a different total contour length, or a different
number of squares with the same contour length. Though there was sig-
ni®cant dishabituation to the contour length change, infants did not
respond to the change in number when contour length was held constant.
This provided strong evidence that in previous studies where non-numerical
cues were not controlled, infants were responding to changes in those cues,
and not to the changes in number.

Other studies have demonstrated more sophisticated numerical abilities
in infants. These include habituation±dishabituation to events or sounds
(Sharon & Wynn, 1998; Wynn, 1996), violation-of-expectation experiments
involving simple addition and subtraction problems (Simon, Hespos, &
Rochat, 1995; Wynn, 1992b), and intermodal matching of numerically
equivalent sets (Starkey et al., 1990). However, in every study, there was at
least one non-numerical cue confounded with number (Mix et al., 2002a). We
are unaware of any work published since that time that has succeeded in
overcoming these confounds. And in several cases, when even one of these
non-numerical cues has been controlled, infants have failed to respond to
number (Demany, McKenzie, & Vurpillot, 1977; Feigenson, Carey, &
Spelke, 2002; Lewkowicz, Dickson, & Kraebel, 2001). Thus, the very
evidence that inspired domain speci®c theories of number development
appears to re¯ect domain general perceptual processing instead.

But what if an infant study did show unequivocal sensitivity to number?
Would that necessitate a domain speci®c explanation? We are not con-
vinced. As we discussed earlier, there is strong evidence that human infants
are quite sensitive to statistically reliable patterns in perceptual experience.
With relatively brief exposure to correlated percepts, they not only isolate
recurring patterns, but also recognize these in novel situations (Gomez &
Gerken, 1999; Kirkham, et al., 2002; Saffron, et al., 1996). Most infant
number experiments have been carried out with babies 5 months old or
older. But even a 1-month-old has had so much exposure to objects and
visual scenes, literally millions of data points (Blumberg, 2005), that it
would be plausible for them to respond to changes in set size based on early
learning, rather than an innate endowment. During our review of the object
individuation literature, we noted that infants acquire a range of cues in a
predictable sequence ± one that is consistent with the gradual isolation of
multiple, statistically reliable associations among correlated features. Thus,
even if we assume, for the sake of argument, that infants exhibit true
numerical sensitivity, there is no reason to assume that this sensitivity is
built in, rather than constructed via domain general processes.

Conclusions

This chapter has focused on the key problems children must solve as they
construct a concept of number. Domain speci®c accounts have been
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developed to explain how children solve these problems. However, our
review suggests that number development can be explained solely in terms
of domain general processes, including those for pattern recognition, categ-
orization, comparison, and naming. Not only do these processes provide
plausible explanations for number development, but they are evident in the
speci®c patterns obtained in the extant studies. That is, number devel-
opment bears the signatures of the particular processes that have been
documented in the development of other concepts and categories. The main
source of evidence that seems to compel a domain speci®c account, numeri-
cal sensitivity in infants, is undermined by non-numerical confounds. How-
ever, at a more basic level, we question whether awareness of any property
in infants requires a domain speci®c knowledge structure when such
awareness could arise from sensitivity to statistical patterns and massive
sensory input. In summary, while it is not possible to rule out domain
speci®c processing for number conclusively, we ®nd nothing in the evidence
that compels it.

Research on early number concepts has focused on the development of
domain speci®c accounts, and the refutation of them, for some time.
Although (or perhaps because) domain general processes are assumed to
exist by most investigators, there has been little interest in understanding
how they contribute to numerical development. This is unfortunate because,
from any perspective, these processes must play a central role. They are the
blue-chip stock of developmental psychology ± well-established and well-
understood mechanisms of conceptual change. If there are domain speci®c
components to number learning, then these components must interact with
domain general processes. If there are not domain speci®c components, then
domain general processes shoulder the entire explanatory burden. Either
way, we hope that this chapter will lead to greater acknowledgement of the
power of domain general processing and interest in its impact on early
number development.
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