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Order of Presentation Effects in Learning
Color Categories

Catherine M. Sandhofer
University of California, Los Angeles

Leonidas A. A. Doumas
University of Hawaii, Manoa

Two studies, an experimental category learning task and a computational
simulation, examined how sequencing training instances to maximize compari-
son and memory affects category learning. In Study 1, 2-year-old children
learned color categories with three training conditions that varied in how cate-
gories were distributed throughout training and how similarity between exem-
plars progressed across instances. The results indicate that beginning learning
by interacting with a limited set of highly similar exemplars leads to more
learning than when the instances are distributed and dissimilar. In Study 2,
order effects were examined with a symbolic connectionist model of general
learning and representation discovery (DORA). The results of the studies sug-
gest that when the presentation of instances is ordered in such a way that dis-
crete instances of a category can be more readily connected in memory,
category learning and discovery are more likely to occur.

A long history of research on learning categories and concepts has focused on
the learning situations that make categories easier versus harder to learn.
This line of work has focused on the role of prior knowledge (Kaplan &
Murphy, 2000; Pazzani, 1991; Wattenmaker et al., 1986), category labels
(Barsalou, 2003; Kersten & Smith, 2002; Kotovsky & Gentner, 1996), and
the types and range of instances presented (Posner & Keele, 1968; Ross,
1996, 1997; Yamauchi & Markman, 1998). Considerable research suggests
that children and adults learn more quickly and accurately if the learning
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trials include a full range of instances of the category. For example, in learning
the category of ‘‘red,’’ a child exclusively presented with instances of red
cars would most likely form a very narrow category of redness in which
red pencils and red airplanes are rejected as possible category members.
Moreover, presenting such a narrow range of instances of the category
‘‘red’’ would perhaps lead the learner to an incorrect hypothesis about the
category (e.g., presuming that ‘‘red’’ refers to wheeled things or perhaps
things that are red and car shaped). If, on the other hand, a learner is
presented with a broad range of category instances (e.g., a set that includes
red cars, red socks, red apples, red paint, and other diverse red instances),
the learner should be able to deduce that red pencils and red airplanes are
category members.

In this line of work, the focus has been on showing the types of instances
that affect category learning and less consideration has been given to the
particular order or timing in which these instances are experienced. How-
ever, a second line of work, largely emanating from the language acquisition
literature, has focused on the sequence in which specific types of examples
are presented during the learning history. This literature began with the
somewhat paradoxical hypothesis that starting with less information may
result in greater success in the end. The ‘‘Less Is More’’ hypothesis
(Newport, 1990) and the incremental learning model (Elman, 1993) have
argued that there are advantages in beginning the learning process with a
limited set of information.

Elman (1993), for example, simulated this idea by training a neural
network model to process complex sentences by presenting the model with
sentences in which it received one word at a time and was asked to predict
the next word. The network failed to learn when the set of sentences were
presented in random order. However, when the network was trained incre-
mentally, starting by processing the simplest sentences from the set and
gradually processing the more complex sentences, the network was able to
learn the task (but see Rohde & Plaut, 1999). Newport (1990) has used a
similar line of reasoning to argue that younger versus older children’s
increased fluency with language learning may be due to cognitive limitations
of the younger learners that effectively create situations in which initially
only small amounts of the input are processed. As the child becomes older
and the cognitive limitations decrease, more of the input becomes available
for processing. There is some empirical support for this idea. Kersten and
Earles (2001) found that subjects were better able to learn an artificial
language when they were initially presented with only small segments of lan-
guage than when they were presented immediately with the full complexity
of the language. As a whole, these studies suggest that complex problems
may sometimes best be solved by ordering the training instances such that
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learning begins with a subset of relatively easy examples that have little
variation and then increases gradually in complexity and variability.

ORDERING INSTANCES BY SIMILARITY

One way to limit initial variation is to order training instances such that
each instance is highly similar to the next instance. When similarity between
instances changes incrementally, it may be easier to notice which attributes
matter for category membership and which do not. Support for this idea
comes from adult studies in which subjects are given a list of familiar fea-
tures and are asked to determine which feature or combination of features
matter for category membership (Elio & Anderson, 1984; Medin & Bettger,
1994; Wattenmaker, 1993). For example, in Wattenmaker’s study, subjects
were given index cards each depicting four binary attributes: the person’s
favorite sport (either tennis or golf), type of hobby (either painting or cer-
amics), music preference (either jazz or classical), and marital status (either
single or married). The subjects are asked to determine which attribute or
attributes matter for membership in the ‘‘Koala Club’’ or ‘‘Dolphin Club.’’
In these types of experiments, when the cards are ordered such that only one
attribute varies at a time (i.e., similarity changes incrementally), subjects are
more accurate at finding the critical attributes.

The juxtaposition of highly similar instances may also increase attention
to the shared features between successive instances. Work by Gentner and
colleagues (Gentner, 1988, 1989; Gentner & Namy, 1999; Gentner &
Rattermann, 1991) has shown that when instances share a high level of
perceptual similarity, learners are more likely to compare the instances
and notice the similarities and differences between them. Indeed Gentner
and colleagues (Gentner, 1988, 1989; Gentner & Namy, 1999; Gentner &
Rattermann, 1991) have argued that similarity and comparison are the
important drivers in the development of knowledge. Initially only instances
with massively overlapping literal similarity are likely to be compared (see
Gentner, 1988, for review). But through the process of comparison, children
begin to develop a knowledge base, which allows children to make less simi-
lar matches. And as children gain ever more knowledge, they become better
able to make matches without perceptual similarity support.

In one demonstration of this idea, Kotovsky and Gentner (1996) found
that the order in which instances were presented affected children’s rela-
tional matching in a task where children were asked to combine two known
dimensions (size and darkness) to discover an unknown higher-order
relation. In the study, children saw a target array consisting of a series of
circles that increased in size and two choice arrays: a series of squares that
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increased in darkness or a set of squares unordered in darkness. Children
were asked to choose which of the choice arrays matched the target array.
Finding the correct answer required noticing that the squares increasing
in darkness and the circles increasing in size both involve the relation of
increasing in magnitude. Under normal circumstances, this kind of cross-
dimensional matching problem is quite difficult for 4-year-old children. In
their study, Kotovsky and Gentner attempted to teach children to find
the cross-dimensional match using different training conditions. When the
examples were randomly ordered, children responded at chance levels. How-
ever, in a training regimen termed ‘‘progressive alignment,’’ children were
presented with an ordered series of trials that began with mappings based
on overall similarity. In this regimen, children were presented with a training
series based on simple one-dimensional mappings (i.e., ascending size series
mapped to an ascending size series and ascending darkness series mapped to
ascending darkness series). In each case, children began with easy holistic
matches (e.g., matching dark circles to dark circles) and progressed to
harder ones (e.g., matching dark circles to dark squares). Children who
received progressive alignment training succeeded in learning the abstract
cross-dimensional mappings without feedback and virtually without error.
This study provides support for the idea that beginning learning with limited
amounts of variation in the initial instances may ease the discovery of
difficult and unfamiliar categories.

DISTRIBUTING INSTANCES

Another line of studies in which ordering of trials affects task performance
originates from the memory literature. In this literature the robust finding
among adults (e.g., Toppino, 1991), infants (e.g., Vander Linde, Morrongiello,
& Rovee-Collier, 1985), and animals (e.g., Fanselow & Tighe, 1988) is that
memory for instances is strongest when information is presented over tem-
porally discontinuous sessions instead of presented within a single, massed
session (see Ebbinghaus, 1885; Underwood, 1961). In a typical experiment,
subjects are asked to study a list of target items that are repeated multiple
times during the experiment. The number of intervening trials between the
presentations of the target items defines the spacing. For example, Top-
pino (1991) compared the retention of items in distributed presentations,
in which items recurred three times with five other items presented between
each reoccurrence, to the retention of items in massed presentations, in
which items recurred three times with no other items presented between
each reoccurrence. Toppino found that 3- and 4-year-old children recalled
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more items when the presentations were distributed than when the presen-
tations were massed.

Although studies like this clearly indicate that the way instances are
ordered affects performance, the memory tasks fundamentally differ from
tasks in the language acquisition and cross-dimensional mapping studies.
Critically, the memory tasks do not require subjects to induce, discover,
or generalize, but rather subjects are only asked to remember specific items
(e.g., lists of words) over some time period. Thus, the effect of distributing
instances in temporally disjunct sessions is likely to have differential effects
on performance if the to-be-learned category is familiar or unfamiliar to the
subject. Discovering unfamiliar categories requires subjects to remember
instances across periods of time, but the memory of a specific item needs
to endure only to the point in time in which it could be compared with a
new instance.

In this article we examine whether the order in which training instances
are presented, and not just the content of what is presented, affects what
is ultimately learned. The particular effects we are concerned with in the
present studies are not the type of order effects that researchers take great
pains to avoid through counterbalancing (such as practice or fatigue effects),
but rather deliberate ways of sequencing trials to maximize memory and
similarity between instances. We begin by reporting a study of children’s
category learning in which we vary the initial similarity of category exem-
plars and the distribution of category instances across training. We next
report a network simulation designed to address issues of what differences
in performance based on the order in which learning trials are presented
may mean for learning more generally.

STUDY 1

In Study 1 we trained children using three training conditions: (a) Ordered
Similarity and Massed Presentation (OM), in which children began with
highly similar whole-object matches that progressively became less similar
(in this condition, children were trained with massed presentations of one
category at a time); (b) Random Similarity and Massed Presentation
(RM), in which the similarity between instances was randomly ordered
but children were presented with massed presentations of one category at
a time; and (c) Ordered Similarity and Distributed Presentation (OD), in
which children began with highly similar whole-object matches that pro-
gressively became less similar and the category instances were evenly distrib-
uted throughout training such that children learned all three categories
simultaneously.
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The categories we attempted to teach children in this study were cate-
gories of color (e.g., red, green, yellow). We chose to train children on this
type of category because of children’s well-reported difficulty in learning
color categories (see Sandhofer & Smith, 1999, for review), and we chose
these colors as a contrast to other color training studies. Rice (1980), for
example, found that children needed as many as 1,080 trials to learn to cor-
rectly label the three colors red, green, and yellow. Throughout the study we
use the term massed to refer to situations in which one color is taught at a
time in massed training blocks and the term distributed to refer to situations
in which training of different colors is intermixed throughout training.
Although this correlates with the timing of presentations, at stake in the
present study is the heterogeneity and homogeneity of the training trials.

In all conditions, children are trained using a triad-matching task. In each
trial, children are presented with an exemplar, told its color (e.g., ‘‘This is
red’’), and asked which of two choice objects—a target or a distracter—is
also red. All children in all conditions experienced the same 18 triad
matches, heard the same instructions, and received the same feedback. What
differed between the three conditions was only the order in which the triads
were presented. We compare children’s performance in each of the three
conditions in the training trials and in transfer tasks.

Method

Participants

The participants were 42 monolingual English-speaking 2-year-old children
(mean ¼ 28.8 months, range 24.5–34.9, SD ¼ 3.9 months). Children were
recruited from preschools in Bloomington, Indiana, and Los Angeles,
California. Children were randomly assigned to one of the three training
conditions. In each training condition, half of the children were male and
half were female. Children were initially screened for color knowledge using
a color pretest, and children who made three correct selections (out of 3
questions) were not eligible to participate. In addition, children with a
family history of color blindness were not eligible to participate.

Procedure and Materials

Children participated in the tasks in the following order: (a) pretest,
(b) training, (c) memory test, and (d) posttest. The entire study took
approximately 20 minutes to complete. Children were seated facing the
experimenter. Once the child was comfortable, the experimenter asked the
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child if they wanted to ‘‘play a game with the toys I brought.’’ Table 1 shows
the sequence of events in the experiment.

Pretest=posttest. Children were queried on their ability to comprehend
the terms red, yellow, and green. Stimuli consisted of one red, one yellow,
and one green fabric square. The colors were primary colors easily identifi-
able by adults as red, green, or yellow. The squares were placed in front of
the child in a random sequence, and the child was asked to indicate a parti-
cular color, for example, ‘‘Show me red.’’ After the child made a selection,
the child was thanked, the squares were reordered and replaced in front of
the child, and the next color was queried.

Training. In each trial, children were shown one of three exemplar
objects, a color matching choice, and a distracter object. The three exemplar
objects used in the training trials were a large red cup, a large yellow shoe,
and a large green dinosaur. The color matching objects and distracter

TABLE 1
An Example of the Sequence of Events in the Three Conditions

Ordered Similarity and
Massed Presentation (OM)

Ordered Similarity and
Distributed (OD)

Random Similarity and
Massed (RM)

1. Pretest 1. Pretest 1. Pretest
2. Training 2. Training 2. Training
Whole-object trial (Red) Whole-object trial (Red) Attribute trial (Red)
Whole-object trial (Red) Whole-object trial (Red) Whole-object trial (Red)
Attribute trial (Red) Whole-object trial (Yellow) Attribute trial (Red)
Attribute trial (Red) Whole-object trial (Yellow) Attribute trial (Red)
Attribute trial (Red) Whole-object trial (Green) Whole-object trial (Red)
Attribute trial (Red) Whole-object trial (Green) Attribute trial (Red)
Whole-object trial (Yellow) Attribute trial (Red) Attribute trial (Yellow)
Whole-object trial (Yellow) Attribute trial (Red) Attribute trial (Yellow)
Attribute trial (Yellow) Attribute trial (Yellow) Whole-object trial (Yellow)
Attribute trial (Yellow) Attribute trial (Yellow) Attribute trial (Yellow)
Attribute trial (Yellow) Attribute trial (Green) Whole-object trial (Yellow)
Attribute trial (Yellow) Attribute trial (Green) Attribute trial (Yellow)
Whole-object trial (Green) Attribute trial (Red) Attribute trial (Green)
Whole-object trial (Green) Attribute trial (Red) Attribute trial (Green)
Attribute trial (Green) Attribute trial (Yellow) Attribute trial (Green)
Attribute trial (Green) Attribute trial (Yellow) Whole-object trial (Green)
Attribute trial (Green) Attribute trial (Green) Attribute trial (Green)
Attribute trial (Green) Attribute trial (Green) Whole-object trial (Green)

3. Memory test 3. Memory test 3. Memory test
4. Posttest 4. Posttest 4. Posttest
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objects were smaller than the exemplars. The entire set of object triads is
listed in the Appendix.

At the beginning of each trial, the child was given the exemplar, color
match, and distracter objects to play with for 15–30 seconds. The objects
were taken away, and the experimenter held up the exemplar object and
said, for example, ‘‘This is red. This is red. It goes in here,’’ and then placed
the exemplar in a transparent bucket. The two choice objects were then
placed equidistantly in front of the child, and the experimenter said, for
example, ‘‘Which one’s red? Get the red one.’’

If the child selected the correct color matching choice, the experimenter
said, ‘‘You’re right! Put it in there (the transparent bucket). It’s red (holding
up the exemplar object) and it’s red (holding up the child’s choice object).
Good for you!’’

If the child selected the wrong object, the experimenter took the distracter
from the child and placed the color match in the child’s hand while saying,
‘‘No, that’s not red. This is red; it goes in here (the transparent bucket). It’s
red (holding up the exemplar object) and it’s red (holding up the child’s choice
object). Good for you!’’ Thus, although children may have initially chosen
an incorrect color match, they were essentially forced to ultimately select
the correct color matching choice. The objects were then removed and the
experimenter suggested, ‘‘That was fun. Let’s play again!’’ Children were
allowed to work at their own pace; however, children who refused to make
a selection after three explicit requests were treated in the same manner as
children who had made an incorrect selection.

There were two types of triad matches: whole-object similarity matches
and attribute matches. Examples of the triad types are shown in Figure 1.
In the Whole-Object Similarity trials, children received two whole-object
similarity trials for each of the three colors queried. The choice objects in
each trial included the color match and the distracter. In addition to
matching the exemplar in color, the color matching objects in these
trials also matched by object kind, e.g., matching a large yellow shoe
(exemplar) to a small yellow shoe (color match). The distracter object
did not match the exemplar object in any way, e.g., a red plastic flower.
In Figure 1, boxes a, d, and g show examples of whole-object similarity
trials. Note that the color match and distracter choice objects were different
from each other in object kind and, in that way, highly discriminable
from one another. Thus, in these trials the child could select the correct
choice merely by choosing the object that was most similar to the exemplar
overall.

Children received four Attribute trials for each of the three colors
queried. The choice objects in each trial included a color matching object
and a distracter object. The color match was identical to the exemplar
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object in color, but not in other properties, e.g., matching the large red cup
(exemplar) to a red apple (color match). The distracter object did not match
the exemplar object in any way, e.g., a yellow wrench. In half of the trials,
the color match and distracter choice objects were different from each
other in object kind, e.g., a red apple (color match) and a yellow wrench
(distracter). In Figure 1, boxes b, e, and h show examples of these attribute
trials. In the other half of the trials, the color match and distracter choice
objects were identical to each other in every way except for color, e.g., a
red table (color match) and a green table (distracter), and thuswere discrimin-
able only in the attribute of color. In Figure 1, boxes c, f, and i show examples
of these trials.

Children participated in one of three training conditions. Table 1 illus-
trates the sequence of events for the three conditions. The three conditions
OM, RM, and OD differed only in the order in which the trials were
presented; thus all children were presented with all trials.

FIGURE 1 Examples of the objects used in the experiment. Whole-object similarity and the
two types of attribute trials are shown for each of the three colors.
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In the OM condition, children were presented with Whole-Object Simi-
larity matches first and the trials for each of the colors in blocks. That is,
all of the training trials for an individual color were presented before the
trials for another color were introduced, and the training trials for each
color began with whole-object similarity matches. Specifically, for each
color, children were first presented with the two whole-object matches
followed by the four Attribute matches. Which color block was presented
first, second, or third was randomly determined for each child.

In the OD condition, children were presented with Whole-Object Simi-
larity matching trials first, but training trials for the three colors were inter-
spersed (i.e., not blocked). Which color was presented first, second, or third
was randomly determined for each child.

In the RM condition, children were presented with all of the trials for
each of the colors in blocks, but within each color block, children were pre-
sented with the Whole-Object Similarity and Attribute matches in random
order. Which color block was presented first, second, or third was randomly
determined for each child.

Memory test. Children were presented with the three exemplar objects
and asked to identify each of the three colors queried, for example, ‘‘Show
me red.’’ No feedback was provided.

Results

Pretest

There was no difference in the pretest scores for children in the three
conditions: OM (mean ¼ 1.14, SD ¼ .66), RM (mean ¼ 1.14, SD ¼ .77),
OD (mean ¼ 1.21, SD ¼ .58). Thus, prior to training, children in the three
conditions did not differ in performance.

Training

Children’s performance on the training trials for the three conditions is
shown in Figure 2. As can be seen, children in the OM condition performed
significantly better in both the Whole-Object Similarity Matches and the
Attribute matches than children in the other two conditions. A 3 (con-
dition)" 2 (trial type) repeated measures ANOVA revealed a main effect
of condition, F(2, 39) ¼ 19.49, p < .01, and a main effect of trial type,
F(1, 39) ¼ 12.29, p < .01, but no interaction. Post hoc analyses revealed that
children in the OM condition scored significantly higher in the training trials
than children in the other two conditions (Tukey’s HSD p < .05). Post hoc
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analyses also revealed that children in all conditions scored significantly
better in the whole-object match trial types than in the attribute trials.

Memory Test

In the memory test, children were shown the three exemplar objects and
were asked, for example, ‘‘Show me red.’’ Figure 3 shows children’s per-
formance in the memory trials. Children in the OM condition and children
in the OD condition chose the correctly colored exemplar at levels that
exceeded chance performance, OM condition mean ¼ 2.21, SD ¼ .80,
t(13) ¼ 5.67, p < .01; OD condition mean ¼ 1.93, SD ¼ .1.27,
t(13) ¼ 2.74, p < .05, but children in the RM condition did not (RM
mean ¼ 1.43, SD ¼ .94).

Posttest

In the posttest, children were shown the fabric squares from the pretest and
were asked, for example, ‘‘Show me red.’’ Figure 3 shows the posttest scores
in the three conditions. Children in the OM condition showed a significant
increase in color comprehension on the posttest compared to their scores on
the pretest, t(13) ¼ 3.12, p < .01, d ¼ .83, but the children in the other two
conditions did not show a significant increase in color comprehension on

FIGURE 2 Children’s performance in the training trials for each of the three conditions.
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the posttest: OM mean ¼ 2.00, SD ¼ .96, RM mean ¼ 1.71, SD ¼ 1.07, OD
mean ¼ 1.64, SD ¼ 1.01. Thus, not only did children in the OM condition
demonstrate that they had learned about color during the 18-trial experi-
ment, but children in the OM condition were able to find the correct color
choices even when the choices present the far transfer of the posttest items.

These results show that the order inwhich instances were presented in a cate-
gory learning task affected what was learned from the task. Specifically, both
beginning by learning labels that applied to holistically similar things and mas-
tering one color word before learning a second color word appear to aid learn-
ing. Moreover, the magnitude of this type of training appears to be largely
based on the effect size found between pretest and posttest scores in the OM
condition. Similar to the children in Kotovsky and Gentner’s (1996) study,
the children in the OM condition in the present experiment were nearly error-
less during the training procedure and moreover showed significant improve-
ment in a far transfer posttest task. Children in the OD condition who began
by learning all three labels simultaneously and children in the RM condition
who began with holistically dissimilar matches did not succeed in the training
or transfer tasks. These results are especially striking in that children in all three
conditions experienced the exact same examples during the training procedure.

FIGURE 3 Children’s performance in the pretest, memory test, and posttest for each of the
three conditions.
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The only difference between the three conditions was the order in which the
examples were presented.

Why did children in the OM condition show increased learning during
the course of the experiment? One possibility is that beginning category
learning by starting with a set of highly similar instances facilitates category
discovery. This idea is consistent with a study by Casasola (2005), which
finds that limiting the amount of object variability aids infants in acquiring
abstract spatial categories. In this study, children who were presented with a
smaller set of object pairs (two vs. six) looked longer at new spatial relations
than at familiar spatial relations, suggesting the infants who viewed a smal-
ler set of objects had formed a spatial category. Additional support for this
idea comes from scaffolding studies in which presenting children with pro-
blems of increasing difficulty leads to more learning than when children
are solely presented with all easy or all hard problems (Vygotsky, 1978).
Similarly, De!aak, Ray, and Pick (2002) found that children were better able
to induce an abstract function sorting rule in a condition where they experi-
enced four training trials that increased in difficulty than in a condition with
two training trials that were of similar difficulty. We further examine the
efficacy of the OM condition in Study 2 and return to the question of the
primacy of the OM condition in the General Discussion.

STUDY 2

In Study 2, we examine the generality of the OM condition as a facilitator
for category discovery by formally modeling the task with a general network
learner. Models are by definition simplifications of the real-world complex
processes involved in learning. The value in simplifying and simulating the
training orders of Study 1 is that we are able to define and isolate the factors
that we expect are important in creating the pattern of results and test
whether changes in these factors model the pattern of results seen in the chil-
dren. In doing so, we attempt to describe the system in terms of the under-
lying mechanisms in the task structure rather than merely noting the
correspondence between the three orders and three patterns of results.
The goal of this second study was thus to identify whether the same pattern
of results we observed in Study 1 would arise when a general learning model
was provided with ordered similarity and massed presentations vs. random
ordered or distributed structure presented in Study 1.

The general learning model we use in the present study is DORA (Dis-
covery Of Relations by Analogy; Doumas et al., 2008). DORA is a symbolic
connectionist model of learning and representation discovery that has
accounted for a wide range of phenomena from the domain of dimension,
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attribute, and relation learning (see Doumas et al., 2008). Importantly,
DORA was not created as a means to account for the present data (rather
DORA was designed to model relation discovery). Consequently, DORA
performance on the task described above serves as a demonstration of
how a general learning system performs when exposed to the three order
conditions. DORA begins with representations of objects composed holisti-
cally as single units (or nodes) connected to unstructured sets of features
(Figure 4). Through processes of comparison and intersection discovery
(described below), DORA learns explicit (i.e., structured) representations
of the properties of compared objects.

In Study 2, we presented DORA with the same training regimens used in
Study 1 (i.e., OD, RM, and OM). In the OM condition, the network learned
one category at a time, and the stimuli were ordered in such a way that the
initial comparisons shared a good deal of overall similarity. In the OD con-
dition, the network was initially presented with comparisons that contained
high overall similarity, but the three categories were learned simultaneously.
In the RM condition, the network learned one category at a time, but the
comparisons within each category were randomly ordered. If the trend
observed in Study 1 is a product of the order effects and not specific domain
of color, then DORA should perform like the children in Study 1 across all
the tested domains.

Method

Architecture

DORA begins with unstructured representations of objects connected to sets
of features (see Figure 4). Eventually, through its learning routines, it comes
to represent information in propositional structures using a hierarchy of

FIGURE 4 A representation of the proposition big (Fido) in DORA.
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distributed and localist codes. We describe the end state of DORA’s repre-
sentations first in order to make the description of DORA’s learning
routines easier to follow.

At the bottom of the representational hierarchy, feature units represent
objects and roles (i.e., single-place predicates) in a distributed fashion
(e.g., a frog might be represented as ‘‘green,’’ ‘‘jumps,’’ ‘‘has-a-long-
tongue,’’ etc., and a clover by ‘‘green,’’ ‘‘four-leaved,’’ ‘‘lucky,’’ etc.; the
small circles in Figures 4 and 5). At the next layer of the network, these dis-
tributed representations are connected to localist PO units that code for spe-
cific object or roles. At the next layer, localist RB units connect objects and
roles into specific role-object pairs (the rectangles in Figures 4 and 5). For
example, to explicitly represent that Fido the dog is big (i.e., the property
‘‘big’’ predicated about Fido or the proposition big [Fido]), DORA
represents Fido as a PO unit connected to the features that define Fido

FIGURE 5 Learning in DORA. (a) A frog and a clover are compared. (b) Semantics shared by
both the frog and the clover objects become more active than any unshared semantics. (c) A new
unit is recruited and learns connections to the active semantics in proportion to their activation
(the new unit is depicted by a triangle simply to increase the clarity of the figure). (d) The new
unit is bound to the frog and to the clover via RB units. Solid lines ¼ strong connections,
dashed lines ¼ weaker connections, darker gray ¼ more active units, lighter gray ¼ less active units.
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(e.g., ‘‘dog,’’ ‘‘fierce,’’ etc.) and the role big as another PO connected to the
features that define ‘‘big’’ bound by a RB unit that represents the binding of
Fido to the property big.

When DORA compares two objects (e.g., a frog and a clover in
Figure 5a), the PO units representing those objects become active and pass
activation to their respective features. Any features shared by both objects
receive approximately twice as much input and, therefore, become approxi-
mately twice as active as unshared features (here the feature ‘‘green’’ is
shared by the frog and the clover and therefore becomes twice as active as
the other features (see Figure 5b). DORA uses a self-supervised learning
algorithm to learn an explicit representation of the featural overlap via a
form of intersection discovery (see, e.g., Doumas et al., 2008). When two
objects are compared, an ‘‘empty’’ PO unit is recruited and learns connec-
tions to active feature units in proportion to their activation by simple Heb-
bian learning (Figure 5c). Consequently, the new PO unit becomes most
strongly connected to the features shared by the two compared objects
because these features are the most active. That is, the new unit is an explicit
representation of the shared features of the compared objects. So, following
the example given in Figure 4, when a frog and a clover are compared, they
activate their constituent features. Any features shared by both the frog and
the clover become more active than any unshared features (in the example,
the feature ‘‘green’’ becomes most active). When a new PO is recruited and
learns connections to the active feature units most, the new PO becomes
most strongly connected to the most active feature units (in Figure 5c the
new PO becomes most strongly connected to the feature ‘‘green’’). Finally,
DORA recruits an empty RB unit in the recipient that learns a connection to
active PO units (here the clover and the new representation of the property
green; Figure 5d). The new RB unit represents the binding of the newly
learned property green to the clover. In other words, DORA has learned
an explicit representation of the greenness of the frog and the clover and
has represented green as a separate and explicit feature of clover object
(e.g., green [clover]).

In the above example, DORA learned an explicit representation of the
property green. In the example, we used a single feature unit to code the fea-
ture ‘‘green’’ in order to make the example easier to follow. However, for
DORA’s operation it is not important what each feature unit codes. The
important aspect of DORA’s learning algorithm is that it isolates and forms
explicit representations of any features shared by compared representations,
whatever those features may be. It makes no difference to DORA whether
‘‘green’’ or any other feature is coded by a single feature unit or by a set of
units. By comparing green things, DORA will isolate and explicitly rep-
resent the features that are invariant in green things (i.e., the features of
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green however they are coded) and discard other features. For the simula-
tion that follows, we use single feature units to code for specific features
in order to make the simulations easier to follow (e.g., ‘‘green’’ or ‘‘blue’’
are coded by single feature units).

Comparison in DORA is accomplished via a mapping algorithm adopted
from LISA (see Doumas et al., 2008; Hummel & Holyoak, 1997, 2003). Pro-
positions in DORA are divided into two sets: the driver set (which controls
the flow of activation in the network) and the recipient set (which responds
to the pattern of activation imposed by the driver set). During mapping, one
at a time POs in the driver become active and pass activation to their fea-
tures. POs in the recipient compete (via lateral inhibition) to respond to
the pattern of activation generated by the active driver PO. Any POs in
the recipient that are connected to the active feature units will become
active. The PO in the recipient that shares the most features with the active
driver PO will, necessarily, become the most active. PO units that are active
at the same time in both the driver and the recipient develop excitatory
mapping connections to one another. Mapping connections represent
analogical correspondences in DORA.

Simulation

We simulated Study 1 as follows. Each exemplar, target, and distracter
object was connected to 20 features. Although each object could, in theory,
present an infinite number of features, we chose 20 as an arbitrary, but
numerous, set of noticeable possibilities. That is, the small yellow shoe could
be represented as ‘‘small,’’ ‘‘yellow,’’ ‘‘oblong,’’ ‘‘made of canvas,’’ ‘‘soft’’,
and so on. One of these features described the object’s value on the category
defining dimension (i.e., the object’s color). The distracter object was cre-
ated by randomly sampling from the set of features. We do not claim that
this is the ‘‘right’’ representation of object features (e.g., that a single feature
codes the color ‘‘red’’ or the property ‘‘oblong’’). We label the features only
to make the model’s performance easier to interpret; the labels themselves
mean nothing to DORA. We claim only that objects have detectable proper-
ties and that these properties are separable (e.g., the same features—
whatever they may be—that represent the concept ‘‘blue’’ become active
in response to a blue object, regardless of the other features of that object
like the fact that it is round).

Featural Similarity

The amount of featural similarity between the objects and the exemplar was
defined as the percentage of shared semantic features. There were two
groups of featural similarity: one corresponding to the whole-object target
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condition, and the other to the various attribute matches. In the whole-
object target condition, the target object shared 80% of its semantic features
with the exemplar object. That is, the two objects were almost identical
(exactly as the whole-object matches, which were the same objects but dif-
ferent sizes). For the attribute matches, the objects were not identical but
had some potential features in common. In order to simulate this condition,
we matched the target and exemplar objects on 70%, 50%, 20%, or 10% of
their features (selected at random). Thus the attribute matches reflected
different degrees of similarity.

Training

For each training trial, we placed a representation of the exemplar object
into the driver and a representation of the two choice items—the target
and distracter objects—in the recipient. DORA then attempted to map
the exemplar object to the target and distracter objects. During mapping,
the driver object became active and passed activation to its features
and the target and distracter items in the recipient competed to become
active. The object that most strongly mapped to the exemplar object was
chosen as the winner. If the exemplar object mapped to neither object,
DORA randomly selected one of the objects (i.e., it guessed). After map-
ping, DORA learned a representation of the featural overlap between the
exemplar object and the chosen item via its intersection discovery routine.
That is, DORA learned an explicit representation of what the exemplar
object and chosen object had in common. If DORA selected the correct
choice (i.e., chose the target item during mapping), DORA moved on to
the next training trial. Alternately, if DORA chose the distracter item during
mapping, DORA was required to map the exemplar object to the target
object and learn the semantic overlap of these two objects via intersection
discovery. DORA then built a new representation from the selected incor-
rect mapping and the required correct mapping via intersection discovery.
This ensured that DORA not only was affected by the feedback it received
when it made the incorrect choice during training but also simulated
the effects of previous choices (including incorrect choices) on future
performance.

On each trial (excluding the first), DORA placed a representation learned
during a prior trial into the driver along with the representation of the
exemplar item. Fifty percent of the time, this was the representation learned
during the previous trial. The other half of the time, this was the represen-
tation learned during the last trial in which the current label was present.
For example, if DORA just finished a trial where it was attempting to
match two red items, DORA would compare this representation to the
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representation it had learned the last time it attempted to match red items.
This corresponded to the idea that children are more likely to recall more
recent instances and instances in which shared labels have been presented.
We chose to set correct recall at 50% because a number of studies (see
Dempster & Corkill, 1999, for a review) have reported that children suffer
from substantial forgetting if they are presented with new material during
a retention interval. Further, because there is a large degree of variation
between different studies of memory interference (as well as between
children within the studies), it is difficult to determine what the ‘‘correct’’
forgetting percentage would be. Selecting 50% as a percentage of correct
recall is in some ways artificial. However, it is well within the limits of
previously reported studies of memory interference.

The three order conditions. We trained DORA using three training
conditions analogous to the three training regimens in Study 1. Just like
the participants in Study 1, DORA received four attribute match trials
and two whole-object match trials per color. The order in which DORA
received these trials directly mirrored the orders from Study 1. In the OM
condition, DORA completed three blocks of training. The blocks were orga-
nized such that DORA learned one category per block, and in the initial
trials, the target and exemplar object shared a high degree of overall featural
similarity. That is, the initial trials in each block simulated the whole-object
condition.

In the OD condition, DORA received the trials such that in the initial
trials the exemplar object and correct target item shared the most overall
similarity, but training trials from all three categories were interspersed
(i.e., not blocked). In the RM training condition, categories were blocked,
but trials were presented randomly within each block. Thus, in the initial
trials the exemplar item did not necessarily share any more overall similarity
with the target item than with the distracter item. We ran 100 simulations
for each training order.

Test Trials

In the test trials, DORA was presented with novel target and distracter
items, each of which contained 20 features. One of these features described
the object’s value on the category defining dimension. That is, if color was
the defining dimension, then each object was attached to a feature describ-
ing its color (e.g., ‘‘red,’’ ‘‘blue,’’ ‘‘green’’). In addition, each object was
attached to 19 additional features that were selected from a pool of 100 fea-
tures. As before, DORA then mapped the exemplar object to the target and
distracter objects. The object that most strongly mapped to the exemplar
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object was chosen as the winner. If the exemplar object mapped to neither
object, DORA randomly selected one of the objects.

Results and Discussion

The results of the test trials from the simulation are presented in Figure 6.
Just like the children in Study 1, DORA performed most accurately on test
trials when it received the OM training, and DORA was at chance when it
received the OD and RM training. Importantly, DORA performs similarly
regardless of which dimension defines the category. That is, the simulation
results reported here suggest that the experimental results of Study 1 are not
an artifact of the particular domain of color or a particular stage in devel-
opment. Rather, these findings suggest that additional studies that examined
other kinds of terms might find similar results, but that remains to be shown
empirically.

It is helpful to understand exactly why DORA succeeds with the OM
training and fails with both OD and RM training. In the OM trials, overall
similarity constrains the early matches. That is, DORA (like the children in
Study 1) can match the exemplar object to the target object instead of the
distracter because the exemplar is simply more like the target than it is like
the distracter. Because perceived similarity depends on the particular frame

FIGURE 6 DORA’s performance on the training trials in the three conditions.
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of reference (Luce, 1959; Osler & Scholnick, 1968; Tversky, 1977), charac-
teristics of both the target and the distracter objects lead to the selection
of the color match. When two objects are highly similar to each other but
also highly distinctive from the surrounding context, children are most likely
to compare them (Paik & Mix, 2006). Accordingly, because the whole-object
trials contain both high overall similarity to the color match and highly dis-
similarity to the distracter object, DORA makes fewer errors on these early
trials. Thus, initially the feature of interest (e.g., ‘‘redness’’) comes along for
the ride, so to speak, and matches are made based on holistic representa-
tions of the objects. However, over consecutive trials DORA refines its rep-
resentation of the category, and over successive comparisons the extraneous
features are washed out and the feature (or features) that remains consistent
across all matches comes to define the category DORA is learning.

In the OD training condition, DORA (like the children in Study 1) does
well on early matches again because the objects that comprise the correct
matches are very similar to one another. However, in the OD training,
DORA learns all categories during the same training block rather than
one at a time like in the OM and RM conditions. As a result, DORA is
faced with two tasks on each trial. First, DORA must select the correct item
and inhibit the distracter (which may possess features that led to a correct
selection in recent past trials). Second, DORA must match the current trial
to the category it is currently learning—that is, it must understand that the
current trial is about the color ‘‘red’’ rather than the color ‘‘green’’—and use
this information to refine its representation of ‘‘red’’ rather than of ‘‘green.’’
In the OM and RM conditions, this aspect of the task is taken care of by the
order of trials. Each successive trial within a block is an instance of the same
category. In the OD condition, this is not the case. Within consecutive trials,
the items match for different reasons. DORA must not only make the cor-
rect match within the current trial but also link the match in the current trial
to matches made in previous trials in order to refine its understanding of the
category.

In the RM training condition, nothing constrains early matches. DORA
(like the children in Study 1) is at chance on early trials, selecting the distrac-
ter item as frequently as it selects the match item. When DORA selects the
distracter item, it cannot completely inhibit this response, and thus it uses a
partial memory of the distracter item to refine its category representation.
The result is that DORA learns more slowly on the trials in which it makes
an error than with the trials in which it is correct. With more trials, DORA
will eventually learn the category. However, as in Study 1, there is a finite
number of training trials, and so it is difficult for DORA to learn to attend
to the relevant feature for the category when it struggles with the early training
trials.
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GENERAL DISCUSSION

In both the experimental study and the network simulation, the three con-
ditions consisted of the exact same procedures, stimuli, and number of train-
ing trials. The order in which the trials were presented, however, differed
between the three conditions and appeared to matter for the learner’s per-
formance. These results suggest that in learning to categorize, the order of
presentation may matter as much as the content of the instances. That is,
how a learner forms a specific category is determined in part by the timing
in which specific category members are experienced.

Why is it that the way the task was structured in the OM condition—
beginning by learning labels that apply to holistically similar things and
mastering one color category before learning a second color category—
resulted in rapid category learning? Learning words by viewing multiple
examples requires connecting the current input with memories of previously
experienced instances. There are four components of the OM condition that
may aid children in inducing and learning the category.

First, the ordered similarity component may increase the ease of
retrieving relevant information by connecting instances in memory. Past
research has strongly indicated that learners are more likely to discover
relational and abstract commonalities when given the opportunity to
compare (Gentner & Namy, 1999; Namy & Gentner, 2002). Gentner
(see Gentner 1983, 1989; Kotovsky & Gentner, 1996) has argued that
comparison is most likely to occur when objects share high levels of sur-
face similarity. Instances that are holistically similar are the instances that
are more likely to be connected in memory. For example, if the child is
presented with a red car followed by another red car and then followed
by a red bus (three items that share many commonalities including color),
the child is likely to group these objects together in memory, which is a
first step in discovering the property of red. If instead a child is presented
with a red car followed by a red sock and a red strawberry (three items
that do not share many commonalities aside from color), the child is less
likely to group the memory of these items together. The car may be
grouped with memories of other cars (yellow cars and black cars) and
the strawberry may be grouped with memories of other tasty foods (such
as chocolate and bananas), but the red car and the red strawberry are less
likely to be grouped in memory and, as a result, the property of red is less
likely to be discovered.

Second, the massed component may help children to induce the mean-
ing of the category because memory from one instance to the next
instance is likely to be most accurate when instances are presented close
together in time. Experiencing sequential examples of the same color
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(e.g., red, followed by red, followed by red) ensures that particular
instances of the same color category are in memory from one trial to
the next, and thus the memory of past instances can be more readily
retrieved and compared to subsequent examples (see Smith, Thelen,
Titzer, & McLin, 1999; Spencer, Smith, & Thelen, 2001). In the memory
literature, it is well established that learners are most likely to remember
information that is presented through distributed, rather than massed,
presentations (see Cepeda et al., 2006; Dempster, 1996, for a review). Dis-
tributed presentations may aid in remembering precise information over
long time periods. However, because success in the present task requires
induction of an unfamiliar category rather than straight recall or recollec-
tion of a specific instance, proximity between instances may be advan-
tageous for making the type of comparisons that can lead to category
discovery, although less optimal for remembering specific features of a
single instance over a long time period.

Third, in the massed presentations, the possibility of interference from a
just experienced member of a different category should be less than when
instances are presented in a massed fashion. DORA, for example, compares
a portion of all successive trials. When the categories are presented one at a
time, these are typically appropriate comparisons (e.g., finding the similarity
between a red object and another red object). However, when categories are
intermixed throughout training, these are typically inappropriate compari-
sons (e.g., finding the similarity between a red object and a yellow object).
That is, in the massed presentations, children do not need to inhibit the
memory of just experienced trials.

Finally, the OM ordering may aid in psychologically reducing the pool of
possible category-defining features. That is, the order of presentation may
matter because as the features of objects get connected to the word ‘‘red’’
through multiple presentations of similar objects, over time the shared fea-
tures become strongly connected to the word ‘‘red.’’ The child’s task then
becomes not one of discovering the relevant feature from a large set of poss-
ible features, but one of discarding the irrelevant features from the small set
of possible features shared across multiple instances. Instance similarity and
massed presentations combined should together aid in reducing competing
features. Indeed, the results of the training study and simulation presented
here show that ordered similarity or massed presentations alone do not suf-
ficiently improve categorization.

However, although the pattern of results in these studies suggest that chil-
dren will most effectively learn new categories given a pattern of presen-
tation similar to the OM condition, children’s natural learning experiences
are likely seldom ordered or massed. Yet children are facile word learners,
learning on average 10,000 words by age 5 (Carey, 1978). This demonstrates
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that learning categories through ordered similarity and massed training is
not a prerequisite for learning. Training of other sorts will ultimately lead
children to align category instances in memory, but children may require
many more instances before they get to the same endpoint.

Moreover, the advantage of the type of ordered presentation found in the
OM trials will arise only when the category features are ones with which the
learner is unfamiliar—those that are yet to be discovered. The performance
of a child who already knows many color categories (e.g., blue, pink,
orange) when presented with a new color category (e.g., magenta) should
be indistinguishable in any of the three training conditions. For example,
De!aak and Narasimham (2003) found no effect of massing or spacing with
3-year-olds when children were presented with new instances of well-known
categories (e.g., object categories). The potency of the OM condition is that
it leads to strengthening memory and attention to the features that matter
and a weakening of memory and attention to competing irrelevant features.
In the absence of ordered examples, similar effects could be accomplished by
simply experiencing more examples. Furthermore, in memory studies, sub-
jects typically learn more rapidly when the material is massed, but they
remember the material for shorter periods (Schmidt & Bjork, 1992). This
could be a factor in the present study because subjects were tested shortly
after training, and thus, it is unclear how long subjects were able to retain
what they learned during training.

So why is less sometimes more in the case of categorization tasks? There
are two aspects involved in category learning. First, learners must link
instances that share categorical membership, and second, learners must
define category boundaries by identifying the features that matter and
excluding the irrelevant features (see Rosch, 1977). Experiences that empha-
size only one of the aspects but not the other are likely to either inhibit cate-
gory formation or result in category overextensions and underextensions.
Additionally, the results of these studies suggest that category learning
may be more successful when learners do not attempt to master both cate-
gory learning aspects simultaneously. Instead, category learning may be
most successful when these aspects are dealt with one at a time. First,
instances that form a category are grouped through strong holistic simi-
larity. In this way, starting with less variation in the initial experienced
instances of a category may contribute to a stronger, more cohesive categ-
orical grouping. Second, category boundaries are refined through successive
comparisons of category instances. The present results suggest that learners
are more successful when fewer categories are simultaneously presented—
that is, when instances are presented in close proximity without interference
from other categories. In sum, the idea that starting with less variation
between experienced exemplars more readily leads to learning appears to

217ORDER EFFECTS IN CATEGORY LEARNING

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
2
:
2
7
 
1
5
 
A
u
g
u
s
t
 
2
0
0
8



go beyond the language acquisition literature and may describe a more
general-purpose approach to learning complex problems.
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APPENDIX
Objects Used in the Training Trials

Exemplar Color match Distracter

Whole-object similarity matches
Large red cup Red cup Green cowboy
Large red cup Red cup Yellow hat
Large green dino Green dino Red hammer
Large green dino Green dino Yellow cone
Large yellow shoe Yellow shoe Red flower
Large yellow shoe Yellow shoe Green horse

Attribute matches
Large red cup Red apple Yellow wrench
Large red cup Red apple Green rocking horse
Large green dino Green heart Red tongue depressor
Large green dino Green heart Yellow cheese
Large yellow shoe Yellow ring Green plate
Large yellow shoe Yellow ring Red train
Large red cup Red tube Yellow tube
Large red cup Red tube Green tube
Large green dino Green basket Red basket
Large green dino Green basket Yellow basket
Large yellow shoe Yellow table Green table
Large yellow shoe Yellow table Red table
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